
NFT Tracking

Connie Lam / Head of Shield, CertiK

Zhaofeng Chen
Reseacher@CertiK Skyfall Team

11

Attack Move Verifiers :
Our Experiences of Exploiting and Enhancing
Move-based Blockchain

NFT Tracking
Blockchain Infrastructure

An Abstraction of Global World Machine
● Decentrialized Network
● Permissionless
● Public states

○ Published Contract
○ Ledger with assets

User interact with blockchain
● R/W: Submit transactions

○ Publish/Execute smart contracts.
● R: Query onchain states

○ RPC

2

NFT Tracking
The Demand Of A More Secure SC Language

Smart contract (SC) hacks: 100M+ loss
● Define new asset types
● Read, write, and transfer assets
● Check access control policies

Existing SC language does not support well for
● Safe abstractions for custom assets, ownership, access control
● Temporarily borrowing an asset in a callee function
● Declaring an asset type in contract 1 that is used by contract 2

3

NFT Tracking
Move In The New Generation Of Blockchains

A new smart contract language for Layer1 blockchains with rich unique security
features
● New programming paradigm: Ownership, Static Types, etc.
● Safer SC languages, advanced testing/analysis/verification tools

4

“If you give me a coin, I will give you a car title”

“If you show me your title and pay a fee, I will give you a car registration”

NFT Tracking
Move In A Nutshell - Resource Abstraction

5

● Resource Identifier: $Address:$Module

● Customize Type: struct (pack/unpack)

● Function Visibility

https://github.com/move-language/move/tree/
main/language/documentation/tutorial

NFT Tracking
Move In A Nutshell - Ownership

6

Ensures that digital assets behave like physical ones
Type system prevents misuse of asset values

Duplication

Destruction

Double Spending

Protect Against

NFT Tracking
Move: A Secure Programming Paradigm For Sc Development

● Static Typing
○ Ownership, borrow, mutation semantic
○ No type conversions

● Resource-Oriented Programming Model
○ No Duplication

■ resource cannot be copied by default
■ only moved between storage locations

○ No Drop

7

NFT Tracking

Security Enforcement in Move

8

Move Background

NFT Tracking

Blockchain

Move Developer’s Perspective - Publish Module & Execute

9

Source
Code

*.mv

Bytecode

payload

Compiled
Module

(Serialized)

compile package &
serialize

*.move

Local Development

Tx
Payload

module A

module B
addr1

addr2
module X

module Y

 Different Transaction Types
○ Publish Module
○ Execute Entrypoint Function

NFT Tracking

Blockchain

Move Developer’s Perspective - Type Safety Enforcement

10

Source
Code

*.mv

Bytecode

payload

Compiled
Module

(Serialized)

compile package &
serialize

*.move

Local Development

Tx
Payload

$ aptos move compile --package-dir ~/test/Demo/
error[E06002]: use of unassigned variable
 ┌─ /home/ubuntu/test/Demo/sources/Coin.move:50:11
 │
49 │ burn(coin);
 │ ----
 │ │
 │ The value of 'coin' was previously moved here.
 │ Suggestion: use 'copy coin' to avoid the move.
50 │ burn(coin);
 │ ^^^^ Invalid usage of previously moved variable
'coin'.

Enforced By Move Compiler

NFT Tracking
Attacker’s Perspective - Module Formats

11

Payload
（before serialization）

Source Code

Bytecode

NFT Tracking

12

CompiledModule

NFT Tracking

Blockchain

Attacker’s Perspective - Bypass Compiler’s Enforcement

13

Source
Code

*.mv

Bytecode

payload

Compiled
Module

(Serialized)

compile package &
serialize

*.move

Local Development

Tx
Payload

$ aptos move compile --package-dir ~/test/Demo/
error[E06002]: use of unassigned variable
 ┌─ /home/ubuntu/test/Demo/sources/Coin.move:50:11
 │
49 │ burn(coin);
 │ ----
 │ │
 │ The value of 'coin' was previously moved here.
 │ Suggestion: use 'copy coin' to avoid the move.
50 │ burn(coin);
 │ ^^^^ Invalid usage of previously moved variable 'coin'.

Craft Voilations in Bytecode

NFT Tracking
Move Virtual Machine - Stack Machine

Each call stack has its own local variables
● function arguments: from caller
● locals: from other vars or global states

Intereptation each instruction
● Computation on the operand stack
● Move data between locals and operand

stack
● Create/destroy call stack frames

 14

slot_i

…

slot_1

slot_0

Locals
（Frames）

…

…

…

…

Operand Stack

MoveLoc
CopyLoc

StoreLoc

…

…

slot_0

…

Ret

Call

MoveTo

MoveFrom

Global
State

NFT Tracking
Move ByteCode - Encoded With TypeInfo

Global Access with $struct_definition_index
● MoveFrom($sd_idx), MoveTo($sd_idx), BorrowGlobal($sd_idx)

Locals Access with $local_slot_index
● MoveLoc($ls_idx), CopyLoc($ls_idx), StoreLoc($ls_idx), BorrowLoc($ls_idx)

Structs Access with $struct_definition_index
● Pack($sd_idx), Unpack($sd_idx), BorrowField($sd_idx),

Vector
● VecPack<T, N>, VecUnpack<T, N>

References: ReadRef, WriteRef

Control-flow: Call<p>, Ret, Br, BrTrue, BrFalse, Abort

Stack: Pop, Not, Add, Sub, Mul, Div, BitOr, BitAnd, Xor, Lt, Gt, Le, Ge, Or, And, Eq, Neq, Shl, Shr

15

NFT Tracking

Blockchain

Attacker’s Perspective - Malform CompiledModule

16

Source
Code

*.mv

Bytecode

payload

Compiled
Module

(Serialized)

compile package &
serialize

*.move

Local Development

Tx
Payload

Fully controllable TxPayload

NFT Tracking
Blockchain’s Perspective: On-chain Security Enforcement

17

Validator Node

Source
Code

*.move

Untrusted Client

Move Verifier
pre-execution

checks

Other
Validators

Global
State

Compiled
Module

Move VM
interpreted execution

Compiled
Module

Full Node

RPC
Service

TxPool

Tx
Payload

Tx
Payload

Designed to defend against malformed TxPayload

NFT Tracking
MV Verifier: Security Checks

18

InstructionCosnsitency

RecursiveStructDefChecker

SignatureChecker

DuplicationChecker

LimitsVerifers

BoundsChecker

…

StackUsageVerifier

TypeSafetVerifier

LocalSafetyVerifier

ReferenceVerifier

AcquiresVerifier

Structural Checks

Semantic Checks

Mandatory verification stage before execution

- 20+ checkers

 - modules, struct_def, function_def, constant

 - signatures

NFT Tracking

Threat Modeling of Move-based Blockchains

19

Move Background
Security Enforcement in Move

NFT Tracking
Attack Surface Analysis: Targets

20

Full Node RPC Service
 - Checks Tx size, signature, nonce, etc.

 - Query on-chain states.

DoS Issues (e.g. Resource exhaustion, panic)

Full node outage cuts off the connection between users

and the network. The blockchain is still operational.

Validator Node Network
 - Move VM + Verifier

DoS Issues (e.g. Resource exhaustion, panic)

Correctness Issues (e.g. Wrong results)

Validator Node

Move Verifier
pre-execution

checks

Other
Validators

Move VM
interpreted execution

Compiled
Module

Full Node

RPC
Service

TxPool

Tx
Payload

Tx
Payload

Memory-safe Impelmentation

State
Queries

NFT Tracking
Attack Surface Analysis: Challenges

21

Challenges
- No more memory-safety Bugs

 - Pure Rust, fobidden_unsafe

- Mandatory verification stage

 - Pass checks before executed by VM

- Charge gas fee during executing

 - Mitigate resource exhaustion

Validator Node

Move Verifier
pre-execution

checks

Other
Validators

Move VM
interpreted execution

Compiled
Module

Full Node

RPC
Service

TxPool

Tx
Payload

Tx
Payload

Memory-safe Impelmentation

State
Queries

NFT Tracking
Attack Surface Analysis: Opportunities

No more memory-safety bugs ⇒ Bug patterns unrelated with memory safety

22

Integer overflow
 let a = u8::MAX;
 let b:u8 = 2;

 assert_eq!(1,a+b); // Panic in Debug
 assert_eq!(1,a.add(b));

 assert_eq!(None,a.checked_add(b));
 assert_eq!(255,a.saturating_add(b));

Runtime panics

Consequences: Denial of Sevice

NFT Tracking
Attack Surface Analysis: Opportunities

Mandatory verification stage
⇒ Critical to on-chain security enforcement
⇒ The implementation is complicated (Abstract Interpretation, CFG building, etc.)

23

Targeted Aspects Consequences
❖ Correctness

● Type enforcement failure

❖ Robustness
● Panic
● Resource exhausion
● Livelock

❖ Forging/Stealing Fund (Integrity)

❖ Denial of Sevice (Availability)
● Chain shutdown due to node crashes
● Chain not responsive to new Txns

The severity of DoS in Web3?

NFT Tracking
The Realistic Threats of Web3: Network Outage

24

Consequences After Network Outage

● DApp Suspension

● Native Token Price Drop

● Exchange Lockup

Ecosystem Confidence Loss
 - DApp Developers + Users

 - Token Traders

NFT Tracking
Critical Dos In Web3: Equally Important As Integrity Issues

25

https://hackenproof.com/sui/sui-protocol

NFT Tracking
Critical Dos In Web3: Equally Important As Integrity Issues

26

Critical DoS in Web3
- Stall tx processing

 - Multiple nodes Validator network.

- Hardfork to resolve

 - Unreconverable by restarting.

The double-edged sword feature
(in the decentralized world)

- Automatic transaction propagation

Validator Node

Move Verifier
pre-execution

checks

Other
Validators

Move VM
interpreted execution

Compiled
Module

Full Node

RPC
Service

TxPool

Tx
Payload

Tx
Payload

NFT Tracking
Bug Finding Objectives

Correctness Issues
● Breaking the on-chain TypeSafety enforncement

○ Missing checks in Move Verifier
○ Defect check implementation in Move Verifier

Robustness Issues
● Unrecoverable exceptions

○ Runtime panics
○ Integer overflow, etc.

● Resource exhaustion in Move Verifier or Move VM
○ Deadloops
○ Memory explosion

27

❖ Integrity
❖ Availability

NFT Tracking

Hunting For The Bugs

28

Move Background
Security Enforcement in Move
Threat Modeling of Move-based Blockchains

NFT Tracking
Approach 1: Manually Play with the CompiledModule

Manually Introducing Inconsistency
● Out-of-bound offset
● Mismatched reference index
● Recursive reference tokens
● ….

29

Verifier checkers catch almost all the
malformed behaviors.

NFT Tracking
Approach 1: Manually Manipulate CompiledModule

Checker sequence matters
● Bounds Checking: Ensures each referenced offset is

in-bound before access. Mitigates out-of-bounds
vulnerabilities.

● Limit Checking: Validates number of entries in each table.
Prevents overflows.

● Duplication Checking: Checks for duplicate entries. Avoids
ambiguities.

● Signature Checking: Verifies struct/function definitions
match declarations. Prevents type confusion.

● …

30

Crafting edge cases around one checker may be
mitigated by prior checkers in the sequence.

NFT Tracking
Checker Sequence Matters: SignatureChecker

31

SignatureChecker: Recursive Call?

Mitigated by LimitsChecker

NFT Tracking
Approach 2: Fuzzing the through CompiledModule

Granularity Tradeoff About CompileModule Mutation
● Entire structure: less efficient, more inconsistency
● Subfields: more focusing, less inconsistency

Limited Exception Signals
● Runtime exception
● Memory corruption
● Cannot catch if there is a checker bypass

32

NFT Tracking
Approach 3: Review The Code Semantic

Manual review. Dive into each checker.
● Trade off between depth and breadth first exploration
● Avoid getting lost by reviewing with questions

○ What properties is it enforcing? Invariants? Edge cases?
○ Could I implement this code easily?
○ If not, what could possibly be wrong?
○ Any semantic inconsistencies?

33

NFT Tracking

Findings

Type 1: Triggering Panic in Validator

34

NFT Tracking
#1: Unhandled Panic During Module Normalization

Move VM is implemented in Rust
● Memory Safe but not Panic Free
● Explicit panics

○ assert!(), panic!(),
○ Err::unwrap()
○ unreachable!()

● Implicit panics
● Hashmap::index

e.g. map[“key”]

35

Fix: Introduce Panic Handling
● std::panic::catch_unwind
● use Result to propagate Error

Module Normalization Panic

NFT Tracking
Challenges To Discover This Issue
Module Normalization is in the Module Republish Routine

Depending on prior states.

Bypass verifier:
● untrusted module is accessed

before being verified.

36

Module
Normalization

Module
Exists

Deserialized
Module

Module
Verification …

No

Yes

NFT Tracking

Findings

Type 2: Bypass Type Safety Enforcement

37

NFT Tracking
Type Safety Checker’s Enforcement

● The verifier simulates executing each instruction, tracking abstract types
● It checks operand types match expected and operation results are the

expected types

● Examples
○ Bytecode::Add consumes two integer operands

■ Must be same type (u8, u128, etc.)
■ Pushes result integer back onto stack

○ Bytecode::MoveLoc(idx)
■ Moves local at idx with type T to stack, create a type T on stack

○ Bytecode::StLoc(idx) pops stack into local slot idx
■ Checks stack type matches local slot’s sigature

38

NFT Tracking
#2: Failed to Catch Mismatched Type Pack/UnPack

39

Type checking missing at instruction
level
● VecPack OP doesn’t check the

type of elements

Consequence
● Resource fabrication

e.g. Coin Type T2 changed to Coin Type T1

VecPack
(T1, 2)

VecUnPack
(T1, 2)

T1

T1

Vec<T1, 2>

T1

T1

VecPack
(T1, 2)

VecUnPack
(T1, 2)

T1

T1

Vec<T1, 2>

T1

T2

NFT Tracking
Bypass Type Safety: Forge Assets

● Manipulate at bytecode level
● Attack Primitive

○ Convert to arbitrary type

40

c0

Operand Stack

r1

https://github.com/move-language/move/pull/491

NFT Tracking

Finding

Type 3: Verifier Robustness

41

NFT Tracking
Abstract Interpreter
Automatically compute relevant semantic information
about a program by interpreting ("executing") it over an
abstract domain (“states”) instead of concrete values.

42

Abstract Interpreter Engine
- Maintain pre and post states for each block
- Interpret each instruction within block
- Join current block’s post state with all successor BB’s pre-state
- Keep iterating until no state changes

Analysis Plugin
- Defines what to maintain as state in a BB
- Defines how to change states during intepretation
- Defines how to join two BB states

BB_A
Instruction_a1
Instruction_a2
…

StateA_pre

StateA_post

BB_B
Instruction_b1
Instruction_b2
…

StateB_pre

StateB_post

BB_C
Instruction_c1
Instruction_c2
…

StateC_pre

StateC_post

BB_D
Instruction_d1
Instruction_d2
…

StateD_pre

State_post

Other
Plugins

…

NFT Tracking
Abstract Intepreter - Locals Safety Analysis

43

MovLoc(1)

Loc[0]: (NA.)
Loc[1]: b (Available)
Loc[2]: c (Available) …

MovLoc(1) ⇒ Error

Define State

Update/Check State During Interpretation

Operand Stack

a

Local Slots

Loc[0]: a (Available)
Loc[1]: b (Available)
Loc[2]: c (Available) …

Operand StackLocal Slots

Join States

NFT Tracking
#3: Failed to Handle Infinite Analysis Loops

If there is a backedge in CFG, reanalyze
● until no changes to the BB’s joint states

Issue: Inconsistent state joining logic causes
infinite abstract interpreting analysis

44

Abstract
Interpreting

Engine

IDLeak
Analysis

BBa
Instruction_a1
Instruction_a2
…

StateA_pre

BBb
Instruction_b1
Instruction_b2
…

StateA_post

StateB_pre

StateB_post

fn State::join(&mut self,
 new_state: State)
-> IsChanged {
 …
}

// sui-verifier/src/id_leak_verifier.rs
fn join(&mut self, state: &AbstractState,)
-> Result<JoinResult, PartialVMError> {
 let mut changed = false;
 for (local, value) in &state.locals {
 let old_value = *self.locals.get(local);
- changed |= *value != old_value;
- self.locals.insert(*local, value.join(&old_value));
+ let new_value = value.join(&old_value);
+ changed |= new_value != old_value;
+ self.locals.insert(*local, new_value); changed flag vs. value update

NFT Tracking
Sui Bug Bounty - Critical With Maximum Payout

45

NFT Tracking
Mitigation I: Metered Analysis

Introduce meters to interpreter engine and all plugins
Limit the cost for verifier analysis (similar as gas fee)

46

NFT Tracking
Mitigation II: Sacrificing The Module Publish Functionality

47

Validator Node

Move Verifier
pre-execution

checks

Other
Validators

Move VM
interpreted
execution

TxPool

Tx
Payload

Tx
Payload

Publish

Execute

Global
State

Load

depN

…

dep1

Compiled
Module

Effects

Update

Critical DoS in Web3
- Stall tx processing

 - Multiple nodes Validator network.

- Hardfork to resolve

 - Unreconverable by restarting.

Introduce config to launch verifier

with publish routine disabled.
- Only allow execution of existing modules.

- Network is still process tx, partially.

Disabled

NFT Tracking
The rescue workflow - Temporarily Down To Recover

48

If Move Verifier is under attack
● Reject new attack payload

○ Disable module publish
● Reject malformed payload published

○ Blacklist
■ Tx Signer
■ Tx ID
■ Bad dependency

Critical DoS -> Temporarily DoS (High)
- Stall tx processing: Multiple nodes Validator network.

- Hardfork to resolve: Unreconverable by restarting.

NFT Tracking
Other Security Improvement Related to Move Implementations

● Zellic : Vulnerability in CFG construction to Bypass Move Verifiers
● OtterSec: Defense-in-depth hardening to the Move VM Runtime
● Numen: Integer Overflow in Move Verifiers

● and many other findings by community developers and builders …

49

NFT Tracking
Summary

● MOVE-Lang introduces new security features for smart contract dev.

● These feature’s success relies on the correct implementations of verifiers.

● CertiK, along with other Web3 security firms and Move community, have
continuously improved the security of Move implementations.

● Despite these identified findings, we strongly recommend the adoption of
such security features (type safety and formal verification) in blockchain
development.

50

NFT Tracking

Demo Video

51

NFT Tracking

Founded in 2018 by professors of Columbia and Yale,
CertiK is a pioneer in blockchain security, utilizing
best-in-class Formal Verification and AI technology to
secure and monitor blockchains, smart contracts, and
Web3 apps. CertiK completed 3,300+ audits, secured
$287 billion of assets.

Our Investors

About CertiK

52

