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Attack Move Verifiers : 
Our Experiences of Exploiting and Enhancing 
Move-based Blockchain 



NFT Tracking
Blockchain Infrastructure

An Abstraction of Global World Machine
● Decentrialized Network
● Permissionless
● Public states

○ Published Contract
○ Ledger with assets

User interact with blockchain 
● R/W: Submit transactions

○ Publish/Execute smart contracts.
● R: Query onchain states

○ RPC
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The Demand Of A More Secure SC Language

Smart contract (SC) hacks: 100M+ loss
● Define new asset types
● Read, write, and transfer assets
● Check access control policies

Existing SC language does not support well for
● Safe abstractions for custom assets, ownership, access control
● Temporarily borrowing an asset in a callee function 
● Declaring an asset type in contract 1 that is used by contract 2
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Move In The New Generation Of Blockchains 

A new smart contract language for Layer1 blockchains with rich unique security 
features
● New programming paradigm: Ownership, Static Types, etc.
● Safer SC languages, advanced testing/analysis/verification tools
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“If you give me a coin, I will give you a car title”

“If you show me your title and pay a fee, I will give you a car registration”
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Move In A Nutshell - Resource Abstraction 
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● Resource Identifier: $Address:$Module

● Customize Type: struct (pack/unpack) 

● Function Visibility

https://github.com/move-language/move/tree/ 
main/language/documentation/tutorial
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Move In A Nutshell - Ownership 
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Ensures that digital assets behave like physical ones
Type system prevents misuse of asset values

Duplication

Destruction

Double Spending

Protect Against
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Move: A Secure Programming Paradigm For Sc Development

● Static Typing
○ Ownership, borrow, mutation semantic
○ No type conversions

● Resource-Oriented Programming Model
○ No Duplication

■ resource cannot be copied by default
■ only moved between storage locations

○ No Drop
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Security Enforcement in Move
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Move Background
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Blockchain

Move Developer’s Perspective - Publish Module & Execute
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Source
Code

*.mv
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payload
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Module
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*.move
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Tx
Payload

module A
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module Y

     Different Transaction Types
○ Publish Module
○ Execute Entrypoint Function
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Blockchain

Move Developer’s Perspective - Type Safety Enforcement
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Source
Code

*.mv

Bytecode

payload

Compiled
Module

(Serialized)

compile package &
serialize

*.move

Local Development

Tx
Payload

$ aptos move compile --package-dir ~/test/Demo/
error[E06002]: use of unassigned variable
   ┌─ /home/ubuntu/test/Demo/sources/Coin.move:50:11
   │
49 │         burn(coin);
   │              ----
   │              │
   │              The value of 'coin' was previously moved here.
   │              Suggestion: use 'copy coin' to avoid the move.
50 │         burn(coin);
   │              ^^^^ Invalid usage of previously moved variable 
'coin'.

Enforced By Move Compiler
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Attacker’s Perspective - Module Formats
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Payload
（before serialization）

Source Code

Bytecode
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CompiledModule
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Blockchain

Attacker’s Perspective - Bypass Compiler’s Enforcement
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Source
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*.mv

Bytecode

payload

Compiled
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serialize

*.move

Local Development

Tx
Payload

$ aptos move compile --package-dir ~/test/Demo/
error[E06002]: use of unassigned variable
   ┌─ /home/ubuntu/test/Demo/sources/Coin.move:50:11
   │
49 │         burn(coin);
   │              ----
   │              │
   │              The value of 'coin' was previously moved here.
   │              Suggestion: use 'copy coin' to avoid the move.
50 │         burn(coin);
   │              ^^^^ Invalid usage of previously moved variable 'coin'.

Craft Voilations in Bytecode



NFT Tracking
Move Virtual Machine - Stack Machine

Each call stack has its own local variables
● function arguments: from caller
● locals: from other vars or global states 

Intereptation each instruction
● Computation on the operand stack
● Move data between locals and operand 

stack
● Create/destroy call stack frames 
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Move ByteCode - Encoded With TypeInfo

Global Access with $struct_definition_index
● MoveFrom($sd_idx), MoveTo($sd_idx), BorrowGlobal($sd_idx)

Locals Access with $local_slot_index
● MoveLoc($ls_idx), CopyLoc($ls_idx), StoreLoc($ls_idx), BorrowLoc($ls_idx)

Structs Access with $struct_definition_index
● Pack($sd_idx), Unpack($sd_idx), BorrowField($sd_idx),

Vector
● VecPack<T, N>, VecUnpack<T, N>

References: ReadRef, WriteRef

Control-flow: Call<p>, Ret, Br, BrTrue, BrFalse, Abort

Stack: Pop, Not, Add, Sub, Mul, Div, BitOr, BitAnd, Xor, Lt, Gt, Le, Ge, Or, And, Eq, Neq, Shl, Shr
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Blockchain

Attacker’s Perspective - Malform CompiledModule

16

Source
Code

*.mv

Bytecode

payload

Compiled
Module

(Serialized)

compile package &
serialize

*.move

Local Development

Tx
Payload

Fully controllable TxPayload



NFT Tracking
Blockchain’s Perspective: On-chain Security Enforcement 
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Designed to defend against malformed TxPayload
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MV Verifier: Security Checks
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InstructionCosnsitency

RecursiveStructDefChecker

SignatureChecker

DuplicationChecker

LimitsVerifers

BoundsChecker

…

StackUsageVerifier

TypeSafetVerifier

LocalSafetyVerifier

ReferenceVerifier

AcquiresVerifier

Structural Checks

Semantic Checks

Mandatory verification stage before execution

- 20+ checkers

  - modules, struct_def, function_def, constant

  - signatures
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Threat Modeling of Move-based Blockchains
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Move Background
Security Enforcement in Move
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Attack Surface Analysis: Targets
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Full Node RPC Service
    - Checks Tx size, signature, nonce, etc.

    - Query on-chain states.

DoS Issues (e.g. Resource exhaustion, panic)

Full node outage cuts off the connection between users 

and the network. The blockchain is still operational.

Validator Node Network
    - Move VM + Verifier

DoS Issues (e.g. Resource exhaustion, panic)

Correctness Issues (e.g. Wrong results)

Validator Node 

Move Verifier
pre-execution 

checks

Other 
Validators

Move VM
interpreted execution

Compiled
Module

Full Node 

RPC
Service

TxPool

Tx
Payload

Tx
Payload

Memory-safe Impelmentation

State
Queries
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Attack Surface Analysis: Challenges
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Challenges
- No more memory-safety Bugs

    - Pure Rust, fobidden_unsafe

- Mandatory verification stage

    - Pass checks before executed by VM

- Charge gas fee during executing 

    - Mitigate resource exhaustion

Validator Node 

Move Verifier
pre-execution 

checks

Other 
Validators

Move VM
interpreted execution

Compiled
Module

Full Node 

RPC
Service

TxPool

Tx
Payload

Tx
Payload

Memory-safe Impelmentation

State
Queries
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Attack Surface Analysis: Opportunities

No more memory-safety bugs ⇒ Bug patterns unrelated with memory safety
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Integer overflow
    let a = u8::MAX; 
    let b:u8 = 2;

    assert_eq!(1,a+b);   // Panic in Debug
    assert_eq!(1,a.add(b));

    assert_eq!(None,a.checked_add(b));
    assert_eq!(255,a.saturating_add(b));
   
  

    

Runtime panics

Consequences: Denial of Sevice
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Attack Surface Analysis: Opportunities

Mandatory verification stage 
⇒ Critical to on-chain security enforcement
⇒ The implementation is complicated (Abstract Interpretation, CFG building, etc.)
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Targeted Aspects Consequences
❖ Correctness

● Type enforcement failure

❖ Robustness
● Panic
● Resource exhausion
● Livelock

❖ Forging/Stealing Fund (Integrity)

❖ Denial of Sevice (Availability)
● Chain shutdown due to node crashes
● Chain not responsive to new Txns

The severity of DoS in Web3?
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The Realistic Threats of Web3: Network Outage
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Consequences After Network Outage

● DApp Suspension

● Native Token Price Drop

● Exchange Lockup

Ecosystem Confidence Loss 
  - DApp Developers + Users

  - Token Traders
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Critical Dos In Web3: Equally Important As Integrity Issues 

25

https://hackenproof.com/sui/sui-protocol
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Critical Dos In Web3: Equally Important As Integrity Issues 
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Critical DoS in Web3
- Stall tx processing

   - Multiple nodes Validator network.

- Hardfork to resolve

   - Unreconverable by restarting.

The double-edged sword feature 
(in the decentralized world)

- Automatic transaction propagation 

Validator Node 

Move Verifier
pre-execution 

checks

Other 
Validators

Move VM
interpreted execution

Compiled
Module

Full Node 

RPC
Service

TxPool

Tx
Payload

Tx
Payload
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Bug Finding Objectives

Correctness Issues
● Breaking the on-chain TypeSafety enforncement

○ Missing checks in Move Verifier
○ Defect check implementation in Move Verifier

Robustness Issues
● Unrecoverable exceptions

○ Runtime panics
○ Integer overflow, etc.

● Resource exhaustion in Move Verifier or Move VM
○ Deadloops
○ Memory explosion 
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❖ Integrity
❖ Availability
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Hunting For The Bugs
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Move Background
Security Enforcement in Move
Threat Modeling of Move-based Blockchains
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Approach 1: Manually Play with the CompiledModule

Manually Introducing Inconsistency
● Out-of-bound offset
● Mismatched reference index
● Recursive reference tokens
● ….
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Verifier checkers catch almost all the 
malformed behaviors.
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Approach 1: Manually Manipulate CompiledModule

Checker sequence matters
● Bounds Checking: Ensures each referenced offset is 

in-bound before access. Mitigates out-of-bounds 
vulnerabilities.

● Limit Checking: Validates number of entries in each table. 
Prevents overflows.

● Duplication Checking: Checks for duplicate entries. Avoids 
ambiguities.

● Signature Checking: Verifies struct/function definitions 
match declarations. Prevents type confusion.

● …
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Crafting edge cases around one checker may be 
mitigated by prior checkers in the sequence.
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Checker Sequence Matters:  SignatureChecker
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SignatureChecker: Recursive Call?

Mitigated by LimitsChecker
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Approach 2: Fuzzing the through CompiledModule

Granularity Tradeoff About CompileModule Mutation
● Entire structure: less efficient, more inconsistency
● Subfields: more focusing, less inconsistency

Limited Exception Signals
● Runtime exception
● Memory corruption
● Cannot catch if there is a checker bypass
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Approach 3:  Review The Code Semantic

Manual review. Dive into each checker.
● Trade off between depth and breadth first exploration
● Avoid getting lost by reviewing with questions

○ What properties is it enforcing? Invariants? Edge cases?
○ Could I implement this code easily?
○ If not, what could possibly be wrong?
○ Any semantic inconsistencies?
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Findings 

Type 1: Triggering Panic in Validator

34
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#1: Unhandled Panic During Module Normalization

Move VM is implemented in Rust
● Memory Safe but not Panic Free
● Explicit panics

○ assert!(), panic!(),  
○ Err::unwrap()
○ unreachable!()

● Implicit panics
● Hashmap::index

e.g. map[“key”]
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Fix: Introduce Panic Handling
● std::panic::catch_unwind
● use Result to propagate Error 

Module Normalization Panic
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Challenges To Discover This Issue
Module Normalization is in the Module Republish Routine

Depending on prior states.

Bypass verifier:
● untrusted module is accessed 

before being verified.

36

Module 
Normalization

Module 
Exists

Deserialized
Module

Module 
Verification …

No

Yes
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Findings 

Type 2: Bypass Type Safety Enforcement
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Type Safety Checker’s Enforcement

● The verifier simulates executing each instruction, tracking abstract types
● It checks operand types match expected and operation results are the 

expected types

● Examples
○ Bytecode::Add consumes two integer operands

■ Must be same type (u8, u128, etc.)
■ Pushes result integer back onto stack

○ Bytecode::MoveLoc(idx)
■ Moves local at idx with type T to stack, create a type T on stack

○ Bytecode::StLoc(idx) pops stack into local slot idx
■ Checks stack type matches local slot’s sigature 

38



NFT Tracking
#2: Failed to Catch Mismatched Type Pack/UnPack
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Type checking missing at instruction 
level
● VecPack OP doesn’t check the 

type of elements

Consequence
● Resource fabrication 

e.g. Coin Type T2 changed to Coin Type T1

VecPack
(T1, 2)

VecUnPack
(T1, 2)

T1

T1

Vec<T1, 2>

T1

T1

VecPack
(T1, 2)

VecUnPack
(T1, 2)

T1

T1

Vec<T1, 2>

T1

T2



NFT Tracking
Bypass Type Safety: Forge Assets

● Manipulate at bytecode level
● Attack Primitive

○ Convert to arbitrary type
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c0

Operand Stack

r1

https://github.com/move-language/move/pull/491
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Finding 

Type 3: Verifier Robustness
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Abstract Interpreter
Automatically compute relevant semantic information 
about a program by interpreting ("executing") it over an 
abstract domain (“states”) instead of concrete values.
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Abstract Interpreter Engine
- Maintain pre and post states for each block
- Interpret each instruction within block
- Join current block’s post state with all successor BB’s pre-state 
- Keep iterating until no state changes

Analysis Plugin
- Defines what to maintain as state in a BB
- Defines how to change states during intepretation
- Defines how to join two BB states

BB_A
Instruction_a1
Instruction_a2
… 

StateA_pre

StateA_post

BB_B
Instruction_b1
Instruction_b2
… 

StateB_pre

StateB_post

BB_C
Instruction_c1
Instruction_c2
… 

StateC_pre

StateC_post

BB_D
Instruction_d1
Instruction_d2
… 

StateD_pre

State_post

Other
Plugins

…
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Abstract Intepreter - Locals Safety Analysis
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MovLoc(1)

Loc[0]:     (NA.)
Loc[1]:  b (Available)
Loc[2]:  c (Available) …

MovLoc(1) ⇒ Error

Define State

Update/Check State During Interpretation

Operand Stack

a

Local Slots

Loc[0]:  a (Available)
Loc[1]:  b (Available)
Loc[2]:  c (Available) …

Operand StackLocal Slots

Join States



NFT Tracking
#3:  Failed to Handle Infinite Analysis Loops

If there is a backedge in CFG, reanalyze
● until no changes to the BB’s joint states

Issue: Inconsistent state joining logic causes 
infinite abstract interpreting analysis 
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Abstract
Interpreting

Engine

IDLeak
Analysis

BBa
Instruction_a1
Instruction_a2
… 

StateA_pre

BBb
Instruction_b1
Instruction_b2
… 

StateA_post

StateB_pre

StateB_post

fn State::join(&mut self,
    new_state: State)
-> IsChanged {
    …
}

// sui-verifier/src/id_leak_verifier.rs
fn join(&mut self, state: &AbstractState,) 
-> Result<JoinResult, PartialVMError> {
   let mut changed = false;
  for (local, value) in &state.locals {
      let old_value = *self.locals.get(local);
-     changed |= *value != old_value;
-     self.locals.insert(*local, value.join(&old_value));
+     let new_value = value.join(&old_value);
+     changed |= new_value != old_value;
+     self.locals.insert(*local, new_value); changed flag  vs. value update
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Sui Bug Bounty - Critical With Maximum Payout
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Mitigation I: Metered Analysis

Introduce meters to interpreter engine and all plugins 
Limit the cost for verifier analysis (similar as gas fee)
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Mitigation II: Sacrificing The Module Publish Functionality
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Validator Node 

Move Verifier
pre-execution 

checks

Other 
Validators

Move VM
interpreted 
execution

TxPool

Tx
Payload

Tx
Payload

Publish

Execute

Global
State

Load

depN

…

dep1

Compiled
Module

Effects

Update

Critical DoS in Web3
- Stall tx processing

   - Multiple nodes Validator network.

- Hardfork to resolve

   - Unreconverable by restarting.

Introduce config to launch verifier 

with publish routine disabled.
- Only allow execution of existing modules.

- Network is still process tx, partially.

Disabled
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The rescue workflow - Temporarily Down To Recover
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If Move Verifier is under attack
● Reject new attack payload

○ Disable module publish
● Reject malformed payload published

○ Blacklist
■ Tx Signer
■ Tx ID
■ Bad dependency

Critical DoS -> Temporarily DoS (High)
- Stall tx processing: Multiple nodes Validator network.

- Hardfork to resolve: Unreconverable by restarting.
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Other Security Improvement Related to Move Implementations

● Zellic : Vulnerability in CFG construction to Bypass Move Verifiers
● OtterSec: Defense-in-depth hardening to the Move VM Runtime 
● Numen: Integer Overflow in Move Verifiers

● and many other findings by community developers and builders …
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Summary

● MOVE-Lang introduces new security features for smart contract dev.

● These feature’s success relies on the correct implementations of verifiers. 

● CertiK, along with other Web3 security firms and Move community, have 
continuously improved the security of Move implementations. 

● Despite these identified findings, we strongly recommend the adoption of 
such security features (type safety and formal verification) in blockchain 
development.
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Demo Video
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Founded in 2018 by professors of Columbia and Yale, 
CertiK is a pioneer in blockchain security, utilizing 
best-in-class Formal Verification and AI technology to 
secure and monitor blockchains, smart contracts, and 
Web3 apps. CertiK completed 3,300+ audits, secured 
$287 billion of assets.

Our Investors

About CertiK
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