
A roadmap to $50,000 @ PWN2OWN Vehicle:
Dissecting QNX and exploiting its vulnerabilities
Yingjie Cao, Zhe Jing

Nov,2 2023

$ whoarewe
+ Yingjie Cao

Yingjie Cao is a senior security researcher at 360 Security Group. He has
focused on connected vehicle security and won “Super Finder Status” from
Blackberry in 2021. He is now focusing on the offensive research against
connected vehicles. His work has also been accepted by IEEE S&P.

+ Zhe Jing
Zhe Jing is a security researcher with expertise in both offensive and defensive

security. He is particularly passionate about fuzzing and exploiting binary
vulnerabilities.

Table of contents

+ Introduction to QNX

+ Protocol stack analysis

+ Multimedia library vulnerabilities and exploitation

+ Kernel design and the vulnerabilities

+ Reflection over the findings

Part 1
Introduction to QNX

+ Applications

+ Vehicle manufactures Infotainment using/used QNX
BMW / Volkswagen / Audi / Porsche / Ford / Hyundai

Background of QNX

Background of QNX

• Architecture of modern vehicles

T-Box(Telematics)

Infotainment

GW

Server
OTA PubInfra

Remote control

USB Wi-Fi
Bluetooth

ECU ECU ECU

Cluster

Background of QNX

• Architecture of modern vehicles

T-Box(Telematics)

Infotainment

GW

Server
Remote control

USB Wi-Fi
Bluetooth

ECU ECU ECU

Cluster

OTA PubInfra

+ The cluster can be virtualized from the infotainment

+ To be compatible the public network infrastructure (NTP/DNS)

+ To be compatible the public network infrastructure

+ Intranet communication: DHCP/NDP/SOMEIP

Part 2
Protocol analysis

Protocol stack – the public ones

+ Protocols (QNX 7.0 SDP)

+ The effective 1day exploits against them

Protocol stack name Version Date

sntp 4.2.8p12 June 28, 2022

rtsold Shipping from FreeBSD 13 June-Oct, 2022

racoon

ftp

sync

ssh

Part 3
Multimedia vulnerabilities

Multimedia processing

+ When it comes to process an image, here is what the program
routines would look like
0 char *in_name, *out_name;
1 short **the_image;
2 long height, width;
3 create_image_file(in_name, out_name);
4 get_image_size(in_name, &height, &width);
5 the_image = allocate_image_array(height, width);
6 read_image_array(in_name, the_image);
7 call an image processing routine
8 write_image_array(out_name, the_image);
9 free_image_array(the_image, height);

Multimedia processing

+ Height and Width matters a lot
short **allocate_image_array(height, width)
long height, width;
{
int i;
short **the_array;
the_array = malloc(height * sizeof(short *));
for(i=0; i<height; i++){
the_array[i] = malloc(width * sizeof(short));
if(the_array[i] == ’\0’){
printf("\n\tmalloc of the_image[%d] failed", i);
} /* ends if */
} /* ends loop over i */
return(the_array);
} /* ends allocate_image_array */

After loading the image,it's usaual to
use functions like memcpy, fwrite to
process loaded image, and it can be
dangerous when you are not carefully
dealing with height and width ,cause
there can be arbitrary write!

Vulnerability Details

• Root Cause :
No Check On Height!!!

• Integer-overflow leading
to heap-buffer-overflow
(memcpy)

Exploit Tech

• No ASLR
• Leverage memcpy as an arbitrary address writing tool
• Change the return address to the address of "system"

function in libc

Exploit Tech

• Stack address is different
when you are not
debugging

• Patch binary to leak
addresses we need

Exploit Tech

+ Use Z3 Resolver to calculate "Width" and "Height"we need
from z3 import *

width = BitVec("width", 32)

height = BitVec("height", 32)

pitch = ((0x804 & 0x7F) * ((width + 7) & 0xFFFFFFF8) >> 3)

s = Solver()

s.add(pitch * (height-1) + 0x08081b40 == 0x8046a20)

s.add(pitch * height == 1024)

if s.check() == sat:

a = s.model()

print (a)

Demo

SYSTEM("/bin/shutdown") !!!

Exploitation over the air
+ The artist album
+ It is displayed automatically
+ An automatic image parsing procedure behind

Then…

+ Bypassing the Bluetooth authentication
+ Downgrading attack compromises most cars
+ Connect and play…

Mitigation
• Enable ASLR by default, making exploiting harder
• Do more FUZZING or auditing on components which process data given by users
• Implement more mitigation method

Part 4
LPE the kernel

QNX Kernel design

+ Mirco kernel

Thread/Sched/Signal/Timer/Sync/IPC

TCP/IP
Stack

Filesystem

Drivers

Applications

+ Monolithic kernel

Kernel

Userspace

Schedule/Virtual mem

IPC

Filesystem

Drivers

Kernel

Applications

Userspace

QNX Kernel design

+ Mirco kernel

Cons:
- Lower efficiency
- Higher complexity in IPC

Pros:
+ Less attack surfaces
+ Lower kernel complexity
? Secure-by-design

Thread/Sched/Signal/Timer/Sync/IPC

TCP/IP
Stack

Filesystem

Drivers

Applications

Userspace

Does QNX implement mitigations?

• KASLR
• Stack / Heap / mmap - randomized
• Kernal image – fixed address

• SMAP/SMEP (Intel x86) & PXN/PAN (ARM)
• A security mechanism comes out decades ago, widely deployed in modern OS
• Linux, FreeBSD, Windows, …
• QNX, NO

The consequence of lacking SMAP/SMEP

• From a developer’s perspective
• No need to use copy_from_user() / copy_to_user() function cluster
• No necessary to distinguish user/kernel pointers

int
ker_msg_sendv(THREAD *act, struct keragrs_msg_sendv *kap)
{

THREAD *sender;
sender->args.ms.rparts = kap->rparts;

if(kap->rparts >= 0){
int rparts = kap->rparts;

}
}

The consequence of lacking SMAP/SMEP
• After enabling the feature

void
ker_msg_sendv(THREAD *act, struct
keragrs_msg_sendv *kap)
{

THREAD *sender;
sender->args.ms.rparts = kap->rparts;

if(kap->rparts >= 0){
int rparts = kap->rparts;

}
}

void
ker_msg_sendv(THREAD *act, struct keragrs_msg_sendv *kap)
{

THREAD *sender;
void __user *kap;
u16 kap_rparts;

get_user(&kap_rparts, (u16 __user *)kap->rparts);
sender->args.ms.rparts = kap_rparts;
if(kap->rparts >= 0) {

int rparts;
get_user(&rparts, (u16 __user *)kap->rparts);

}
}

A double-fetch bug
• The reason and the consequnce

int
ker_msg_sendv(THREAD *act, struct keragrs_msg_sendv *kap)
{

THREAD *sender;
sender->args.ms.rparts = kap->rparts;

if(kap->rparts >= 0){
int rparts = kap->rparts;

}
}

When the kernel and user process share the
same variable, and the kernel accesses it more
than once, this results in a special race
condition, namely double-fetch, and
sometimes can lead to TOCTOU (Time-Of-
Check to Time-Of-Use)

Where can the vulnerable user data pointers be?
• System call is the most efficient method transfering user data

• System call design – mmap() as an example

_mmap()

Dispatch schedule: _mmap2 / _mmap64_r

User
process

MsgSendnc_r(0x40000000,&msg,0x38,&msg,0x18);

ker_entry

kernel trap

Syscall Calling convention

ker_msg_sendv
Dispatch syscall number to kernel function

Where can the vulnerable user data pointers be?
• System call is the most efficient method transfering user data

• System call design – mmap() as an example

_mmap()

Dispatch schedule: _mmap2 / _mmap64_r

User
process

MsgSendnc_r(0x40000000,&msg,0x38,&msg,0x18);

ker_entry

kernel trap

Syscall handler

ker_msg_sendv
Dispatch syscall number to kernel function

Where can the vulnerable user data pointers be?
• System call is the most efficient method transfering user data

• System call design – mmap() as an example

_mmap()

Dispatch schedule: _mmap2 / _mmap64_r

User
process

MsgSendnc_r(0x40000000,&msg,0x38,&msg,0x18);

ker_entry

kernel trap

Syscall handler

ker_msg_sendv
Dispatch syscall number to kernel function

kerargs_msg_sendv kap is a kernel variable
But it points to a user variable

Race🏎 the kernel!
int ker_msg_sendv(THREAD *act, struct kerargs_msg_sendv *kap) {

…
if(kap->sparts < 0) {

…
}
else if(kap->sparts == 1) {

…
}
else {

IOV *iov = kap->smsg;
int sparts = kap->sparts;
while(sparts) {

base = (uintptr_t)GETIOVBASE(iov);
last = base + GETIOVLEN(iov) - 1;
…
++iov;
--sparts;

}
…

}

// kap->rparts shall not be a negative integer

Race🏎 the kernel!
int ker_msg_sendv(THREAD *act, struct kerargs_msg_sendv *kap) {

…
if(kap->sparts < 0) {

…
}
else if(kap->sparts == 1) {

…
}
else {

IOV *iov = kap->smsg;
int sparts = kap->sparts;
while(sparts) {

base = (uintptr_t)GETIOVBASE(iov);
last = base + GETIOVLEN(iov) - 1;
…
++iov;
--sparts;

}
…

}

// kap->rparts shall not be a negative integer

• Since it is a pointer towards a user memory, we
can modify it arbitrarily.

• After checking the variable sparts bigger than 0,
we modify it to -1

• OOB read

But we did not get privilege escalation yet

Race🏎 & LPE the kernel!
ker_sched_get(THREAD *act, struct kerargs_sched_get *kap) {

…
if(kap->param) {

verify_ptr(act, kap->param, sizeof(*kap->param));
kap->param->sched_curpriority = thp->priority;

}
}

kap kernel stack data
kap->param user data
kap->param->sched_curpriority user data pointed by another user data

Race🏎 & LPE the kernel!
ker_sched_get(THREAD *act, struct kerargs_sched_get *kap) {

…
if(kap->param) {

verify_ptr(act, kap->param, sizeof(*kap->param));
kap->param->sched_curpriority = thp->priority;

}
}

kap kernel stack data
kap->param user data
kap->param->sched_curpriority user data pointed by another user data

A write operation towards

Race🏎 & LPE the kernel!
ker_sched_get(THREAD *act, struct kerargs_sched_get *kap) {

…
if(kap->param) {

verify_ptr(act, kap->param, sizeof(*kap->param));
kap->param->sched_curpriority = thp->priority;

}
}

kap kernel stack data
kap->param user data
kap->param->sched_curpriority user data pointed by another user data

A write operation towardsCan be anything Arbitrary address

Race🏎 & LPE the kernel!
ker_sched_get(THREAD *act, struct kerargs_sched_get *kap) {

…
if(kap->param) {

verify_ptr(act, kap->param, sizeof(*kap->param));
kap->param->sched_curpriority = thp->priority;

}
}

kap kernel stack data
kap->param user data
kap->param->sched_curpriority user data pointed by another user data

A write operation towardsCan be anything Arbitrary address

We get arbitrary write !!!

Find the euid – privilege management of
QNX
ker_sched_get(THREAD *act, struct kerargs_sched_get *kap)

THREAD->process->cred->info->euid

->ruid

->suid

->rgid

->egid

->sgid

->ngroups

->grouplist

Demo

Mitigation
• Copy all variables that will be dereferenced into kernel space
• Override with values from the first fetch
• Abort if changes are detected
• Implement SMAP/SMEP/PAN/PXN

• Implement more kernel mitigation

Part 5
Conclusion

Conclusion and future work
• QNX is not as secure as they claim

• The software is either old or weak

• The implementation of mitigations on QNX has a long way to go

• Car manufactures are recommended to implement better Bluetooth security mechanism to

prevent RCE

Future work

+ QNX hypervisor vm escape

+ QNX GPU driver vulnerabilities

Thanks for listening!

Any question?

