Exploiting null-
derefs

Doing the impossible in the Linux kernel

(Very very slowly)

Google Project Zero Seth Jenkins

Agenda

whoami

The Bug
Refcount Attacks
Getting to Root

Patch Story

Google

O1
whoami

Seth Jenkins
@® Information Security Engineer at Google Project Zero
@® Primarily Linux and Android kernel research
@® Focusing on LPE’s (get to root without a password!)
@® Love to turn bad bugs into good exploits

02
The Bug

® The edge-case of the empty process

@ A process usually has VMAs (virtual memory areas) that
describe the virtual memory used by the process

@® ..but VMAs are not required by Linux for a “valid” process

root@syzkaller:~# cd /proc/1250
root@syzkaller:/proc/1250# 1s

arch_status cgroup coredump_filter environ gid_map loginuid mountinfo ns oom_score_adj projid_map sessionid stack syscall timerslack_ns
attr clear_refs cpu_resctrl_groups exe io map_files mounts numa_maps pagemap root setgroups stat task uid_map
autogroup cmdline cpuset fd ksm_merging_pages maps mountstats oom_adj patch_state sched smaps statm timens_offsets wchan

auxv comm cwd fdinfo limits mem net oom_score personality schedstat smaps_rollup status timers

root@syzkaller:/proc/1250# cat maps
root@syzkaller:/proc/1250# cat numa_maps
root@syzkaller:/proc/1250# cat smaps
root@syzkaller:/proc/1250# cat smaps_rollup
Killed

root@syzkaller:/proc/1250# [

Kernel Oops

ef

PGD @ P4D ©

: 0000 [#1] PREEMPT SMP NOPTI

6 PID: 1270 Comm: cat

: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014

Tainted: G

: 0010:show_smaps_xollup+0x1fb/0x310
90 48 3b 68 08 of 82

: €O 74 1c 48 39 28 73

: 0018:ffffc90003a03c80
: ffff888104490440 RBX:
: 0000000000000000 RSI:
: 0000000000000000 ROB:
: 0000000000000000 R11:
: 0000000000000000 R14:

EFLAGS: 00010246
ffff888104490440
0000000000000100
ffffco0003a03d30
0000000000000000
0000000000000000

]

RCX:
RDI:
RO9:
R12:
R15:
00007Tab98d0e480(0000) GS:ffff88842fb80000(0000) knlGS:0000000000000000

6.0.0+ #16

cl 00 00 00 4d 8b 6d 10 4d 85 ed of 85 79 ff fi

0000000000000000
00000000 fff
0000000000001000
ffff88812545f2co
ffff8881044904b8

: 0010 DS: 0000 ES: 0000 CRO: 0000000080050033
: 0000000000000000 CR3: 0000P0PV125Tc2000 CR4: 00000000V0O350eed

Call Trace:
<TASK>
seq_read_iter+0x122/0x450
seq_read+0xa3/0xdo
vfs_read+0xal/0x280

? handle_mm_fault+@xae/0x290

ksys_read+0x63/0xe0d
do_syscall_64+0x3a/0x90

entry_SYSCALL_64_aftexr_hwframe+0x63/0xcd

: 0033:0x7fab986db910

static int show_smaps_rollup(struct seq_file *m, void *v)

{

Wh h ? priv->task = get_proc_task(priv->inode);
at happened- iy
return -ESRCH;
mm = priv->mm;
if (!'mm || 'mmget_not_zero(mm)) ({
ret = -ESRCH;
goto out_put_task;
mm->mmap points to the first
vma for the associated task.

If a process has no vma'’s ret = mmap_read_lock_killable(mm);

for (vma = priv->mm->mmap; vma;) {

vma = vma->vm_next;
}
show_vma_header_prefix(m, |priv->mm->mmap->vm_start,

last_vma_end, 6, 6, 6, 8);

Null-deref sends kernel to oops mmap_read_unlock (mm) ;
path which calls out_put_mm:
make task dead, ending the mmput (mm) ;
- — out_put_task:
task put_task_struct(priv->task);

Another boring bug...

author Seth Jenkins <sethjenkins@google.com> 2022-10-27 11:36:52 -0400
committer Greg Kroah-Hartman <gregkh@linuxfoundation.org> 2022-10-29 10:12:58 +0200
commit 33fc9e26b7cb39f0d4219c875a2451802249¢225 (patch)

. . tree 6cecd@47ea52b6e8621ec87dcad7c23471132b5d /fs/proc/task_mmu.c
Su b m It a nd fl X parent bod8che90a0f27f2ecaf6f3ze7faf86282ebad7d (diff)
amm download linux-33fc9e26b7cb39f@d4219c875a2451802249¢225.tar.gz

mm: /proc/pid/smaps_rollup: fix no vma's null-deref

Commit 258f669e7e88 ("mm: /proc/pid/smaps_rollup: convert to single value
seq_file") introduced a null-deref if there are no vma's in the task in
show_smaps_xollup.

Fixes: 258f669e7e88 ("mm: /proc/pid/smaps_rollup: convert to single value seq_file")
Signed-off-by: Seth Jenkins <sethjenkins@google.com>

Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>

Tested-by: Alexey Dobriyan <adobriyan@gmail.com>

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Diffstat (limited to 'fs/proc/task_mmu.c’)
-rw-r--r— fs/proc/task_mmu.c 2 il

1 files changed, 1 insertions, 1 deletions

diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c

index d9c@7eecd7872..c3b76746cce85 100644

--- a/fs/proc/task_mmu.c

+++ b/fs/proc/task_mmu.c

@@ -951,7 +951,7 @@ static int show_smaps_rollup(struct seq_file *m, void *v)
vma = vma->vm_next;

- show_vma_header_prefix(m, priv->mm->mmap->vm_start,
+ show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : @,
last_vma_end, @, @, @, 0);
seq_pad(m, ' ');
seq_puts(m, "[rollup]\n");

Oh no, what have | done?!?

Isn’t it great that kernel code can’t be unexpectedly aborted like userland can?

If a task could get a “signal” in the middle of a syscall and the syscall code
suddenly ends without cleanup, that'd lead to so many bugs!

A horrible realization...

oops + make task dead does exactly this...

static int show_smaps_rollup(struct seq_file *m,

{

priv->task = get_proc_task(priv->inode);
if (!priv->task)
return -ESRCH;
mm = priv->mm;
if (!mm || 'mmget_not_zero(mm)) {
ret = -ESRCH;
goto out_put_task;

ret = mmap_read_lock_killable(mm);
for (vma = priv->mm->mmap; vma;) {
vma = vma->vm_next;

}

show_vma_header_prefix(m, priv->mm->mmap->vm_start,
last_vma_end, 6, 6, 6, 0);

mmap_read_unlock(mm) ;
out_put_mm:
mmput(mm) ;
out_put_task:
put_task_struct(priv->task);

(not shown) seq file fdget and
mutex

Task refcount increment

mm refcount increment

mm read lock

dereference

mm read unlock

mm refcount decrement

Task refcount decrement

static int show_smaps_rollup(struct seq_file *m, void *v) (6% o) e s el

{ mutex

priv->task = get_proc_task(priv->inode); Task refcount increment

if (!priv->task)
return -ESRCH;
mm = priv->mm;

if (!mm || !mmget_not_zero(mm)) { mm refcount increment
ret = -ESRCH;

goto out_put_task;
ret = mmap_read_lock_killable(mm); mm read lock
for (vma = priv->mm->mmap; vma;) {

vma = vma->vm_next;

}

show_vma_header_prefix(m, priv->mm->mmap->vm_start,
last_vma_end, 6, 6, 6, 8);

mmap_read_unlock(mm) ;

out_put_mm:
mmput(mm) ;

out_put_task:
put_task_struct(priv->task);

03
Refcount Attacks

Spurious refcount increments and decrements can be exploitable issues
Over-decrement -> freeing object while references still exist a.k.a UAF

Over-increment -> repeated over-increment can cause refcount
overflow, after which refcount increment+decrement can free object
also UAF (except for saturating refcounts)

Oops effects:

The struct file associated seq file’s mutex will forever be locked

. The associated struct file will have areference permanently held if
fdget took a reference

. The task struct associated with the smaps rollup file (aka the no-vma
task) will have a refcount leaked

. Themm struct’smm users refcount associated with the no-vma task will
be leaked Useful?
. Themm struct’s mmap lock will be permanently readlocked

Overflowing the refcount

Trigger a Linux kernel oops enough times to overflow the refcount; ~232 times!

@® We must be able to trigger the oops without causing memory leaks
O We must destroy every opened smaps rollup struct file
B smaps rollup mustbe read from a single-threaded process so fdget doesn’t
take a refcount
B fd must be closed after oops (the associated seq file mutexis permanently
locked). This happens automatically when make task dead tears down the fdtable
O We leak the no-vma task refcount which is a “memory leak”
B But the “leak” only happens on the first smaps rollup read. The future refcount
leaks are on the same “memory leaked” task
O We leak the mm refcount which is a “memory leak”
B Butit's what we're trying to overflow anyway

Timing

We must be able to trigger the oops quickly (232 times is a lot of times)

1 oops 232 oops’s (multithreaded)
Serial console (Qemu) ~45 ms 2+ years
GUI (vanilla Debian) ~5ms ~8 days

Overflowing the refcount

Task A Task B (ptraced)
refcount: 1 refcount: 1
mm-—> mm->

refcount: 1 refcount: 1

vmas vmase]
files-> files->

refcount: 1 refcount: 1

Overflowing the refcount

Task A Task C
refcount: 1 refcount: 1
mm—> mm-—>
Task B (SIGSEGV)
refcount: 1 refcount: 1
refcount: 1
vmas vmas
mm—>
files—> files—>
refcount: 1
refcount: 1 refcount: 1
[none]
files—>
/proc/B/sma
ps_rollup refcount: 1
refcount:

Overflowing the refcount

Task A

refcount: 1

Task C

refcount: 0

mm—>

mm-—>

refcount:

vinas

refcount: 0

Task B (SIGSEGV)

vmas

refcount:

files—>

files->

mm-—>

refcount:

refcount:

refcount:

[none]

/proc/B/sma
ps_rollup

files—>

refcount:

refcount: 1

Overflowing the refcount

Task A Task C
refcount: 1 refcount: 1
mm—> mm-—>
Task B (SIGSEGV)
refcount: 1 refcount: 1
refcount: ~
vmas vmas
mm—>
files—> files—>
refcount: =~
refcount: 1 refcount:
[none]
files—>
/proc/B/sma
ps_rollup refcount: 1
refcount:

Overflowing the refcount

One small hiccup...

Task refcount is saturating...does that matter? We can avoid it...

Task B (SIGSEGV)

refcount:

mm-—>

refcount:

[none]

files—->

refcount: 1

Overflowing the refcount

One small hiccup...

Task refcount is saturating...does that matter? We can avoid it...

Task B (SIGSEGV)

refcount:

Task D (?)

mm—>

files—>

refcount: 1

refcount:

mm—>

refcount:

[none]

files—->

refcount:

1

Overflowing the refcount

One small hiccup...

Task refcount is saturating...does that matter? We can avoid it...

Task B (SIGSEGV)

refcount:

Task D (?)

mm—>

files—>

refcount: 1

refcount:

mm—>

refcount:

[none]

files—->

refcount:

1

Overflowing the refcount

Task B (SIGSEGV)

refcount:

mm—>

refcount:

[none]

files—>

refcount: 1

Overflowing the refcount

In order to free th , W t
order to free the mm, we mmge Task B (SIGSEGV)

and mmput
refcount:
E.g. Task A open’sand close’s
/proc/B/mem mm->
refcount:
[none]
files—>

refcount: 1

04
Getting to root

On Linux kernel after 645918605 (“mm: protect free pgtables with
mmap lock write lock in exit mmap”),exit mmap takes the mmap
write lock. (5.17+)

Still exploitable, but need to take advantage of unintended concurrence of
___mmput calls to cause a double free

...it's a pain.

Thankfully, on the version of Ubuntu | was looking at, the mmap lock is *not*
taken in write mode.

mm gets freed all the way, yay!

What is an mm?

The mm tracks (among other things) the virtual memory layout of the process

- Virtual Memory Areas
- Location of .text/.data etc.
- Mutexing

mm’s also come from their own kernel slab cache

UAF Exploit strategies

® Cross-cache?

® Create arb-rw?

@® Other classic UAF exploit?

@® Easiest strategy - replace the mm with an mm for a more privileged process

Attacker task will share an mm with a privileged process

What attacker task? The task which previously had no vma’s

- More generic exploit strategy - replace a boring version of an object with a
highly privileged version of that same type of object

Replacement strategy

Current status:

® The mm was just freed
@® The attacker task is frozen in segfault tracing stop

What next?

@® Reclaim mm by execve’ing passwd from a lot of processes, spraying new

privileged mm structs.
O Since the mm was allocated a long time (8 days!) ago, the slab containing the mm probably
isn't going to be the per-cpu active slab

@® Allocate enough processes to drain the percpu slab freelist, and allocate
from the percpu partial lists.

A problematic process

Now | have an attacker task that:

- Previously had no vma's
- Is segfaulted
- Has zero understanding of the virtual memory layout it’s in

...what do | do with such a task?

Open /proc/pid/mem from another attacker task!

ProcFS crash course

Each process on Linux has a directory with files that describe and allow
interactions with the respective process.

show smaps rollup isone of these files.

mem is another per-process ProcFS file that when opened represents the virtual
memory of the process.

Virtual memory can be “selected” with 1seek, then read/written using read (2)
and write (2)

Opening the mem of a child process from the parent is allowed by ptrace Yama
as long as uid’s/gids are the same, SELinux allows ptrace, and...

struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)

{

if (mm &&mm ! = current—>mm|&& Iptrace_may_access(task, mode))

A problematic process

}

static int __ptrace_may_access(struct task_struct *task, unsigned int mode)

...iIf the process is dumpable. y

The process will not be e
dumpable, S|nce |t |S a SUID if (uid_eq(caller_uid, tcred->euid) &&

, uid_eq(caller_uid, tcred->suid) &&
prOCGSS S mm. uid_eq(caller_uid, tcred->uid) &&
gid_eq(caller_gid, tcred->egid) &&
gid_eq(caller_gid, tcred->sgid) &&

gid_eq(caller_gid, tcred->gid))
However, a Process can goto ok;

a|way3 Open ItS OWN mem if (ptrace_has_cap(tcred->user_ns, mode))

goto ok;

ok:

We don’t have memory
rw, but we can if (mm &&

. , ((get_dumpable(mm) != SUID_DUMP_USER) &&
read/write the task’s

Iptrace_has_cap(mm->user_ns, mode)))

registers (thanks ptrace) i

return security_ptrace_access_check(task, mode) ;

A problematic process

This task is in a nigh unrunnable state...
So let’s use another task (in practice just use task D we made to split task refcounts):

- Shares the mm with the other process which munmap’d

- Butinstead of being SEGFAULT d after munmap...

- We ptrace syscall stop on syscall entry to an mmap of shellcode

- Wait for mm free and reclaim

- Release the process into the mmap syscall, mapping shellcode into the
privileged/attacker process’s virtual memory

- This process can open /proc/self/mem and share it with the parent process

Task C (opens and reads
smaps_rollup)

Task B (ptrace stop after SIGSEGV)

mm->

refcount: 1

files->

refcount: 1

smaps_rollup

»
»

mm->

files->

refcount: 1

Task D (ptrace syscall stop mmap)

Task A (OG exploit)

mm->

refcount: 1

files->

mm->

mm

refcount: Oxfffffff

files->

:

files

refcount: 2

shellcode memfd

Task B (ptrace stop after SIGSEGV)

mm->

files->

refcount: 1

Task D (ptrace syscall stop mmap)

Task A (OG exploit) mm->

mm->

refcount: 1

files-> —_— files

refcount: 2

shellcode memfd

Task B (ptrace stop after SIGSEGV)

mm->

files->

refcount: 1

Task D (ptrace syscall stop mmap)

Task A (OG exploit) mm->

mm->

refcount: 1

files-> —_— files

refcount: 2

shellcode memfd

Task E (passwd)

Task B (ptrace stop after SIGSEGV)

mm->

files->

refcount: 1

mm->

files->

refcount: 1

I

Task D (ptrace syscall stop mmap)

refcount: 0x1

Task A (OG exploit)

mm->

refcount: 1

files->

mm->

files

refcount: 2

shellcode memfd

Task E (passwd)

Task B (ptrace stop after SIGSEGV)

mm->

files->

refcount: 1

mm->

files->

refcount: 1

I

Task D (mmap fire)

refcount: 0x1

Task A (OG exploit)

mm->

refcount: 1

files->

mm->

shelicode vma

files

refcount: 2

shelicode memfd

Task E (passwd)

Task B (ptrace stop after SIGSEGV)

mm->

files->

refcount: 1

mm->

files->

refcount: 1

mm

I

Task D (open /proc/selfimem)

refcount: Ox1

Task A (OG exploit)

mm->

refcount: 1

files->

mm->

shelicode vma

files->

files

refcount: 2

shelicode memfd

/proc/selffmem

Iproc/self/maps

Final Stage: Getting to root

Now | have read/write to /proc/E/mem aka RW of passwd’s virtual memory)
No shortage of ways to complete the exploit...
While passwd is hung in the prompt:

- nop sled the entire binary image

- Append shellcode that setuid’'sand execve’s /bin/sh

- Send POSIX signal to passwd that causes signal handler to fire, jumping into
binary image.

nopriv@syzkaller: $ whoami

nopriv

noprivésyzkaller: $ GLIBC TUNABLES=glibc.pthread.rseqe® ./poc
Creating shellcode region

rying to turn off console spam

sh: 1: cannot create /proc/sys/kernel/printk: Permission denied
iting for unmap

Issuing traceme

D raising SIGSTOP

C raising SIGSTOP
pidl: 1070

pid2: 1069
childl {terations: 8

child2 {terations: @

iting for overflow to complete, . .Perforning 8 iterations on child 0 with pid 1671
Perforning 8 iterations on child 1 with pid 1072

overflow complete, freeing
sh: 1: cannot create /proc/sys/kernel/printk: Permission denied
Reclaining mm

ttempting mmap

mmap return value: 0x7f21012a7000

odifying RIP and refiring DD pid is 1069

Recieved stop signal 5 from D, RIP is Ox7f21612a706¢

siginfo data: 5 0 128 (nil)

passwd maps:

556b1b660666-55601b66C000 r-xp HOGE6660 68:10 11372 Jusr/bin/passwd

556b1b80c080 -556b1b806d r--p ©066c660 68:10 11372 /usr/bin/passwd
-556b1b80f! 68:10 11372 /usr/bin/passwd

556b1b9b8680 - 556b1b9d9 (L] [heap)

7£2101684060-712101085000 rw-p 66004000 08:10 2941 71ib/x86_64-1inux-gnu/Libpam. 50.0.83.1

7£2101083000-72101028000 r-xp 006000000 08:10 2876 /1ib/x86_64-linux-gnu/1d-2.24.50
7£210129d600-712101223000 rw-p 00000000 00:00 ©

7121012a7000-712101228000 rwxp 00000000 00:01 1025 /menfd:shellcode (deleted)
7121012a8000-712101229 r--p 66023000 08:10 2876 /11b/x86_64-1inux-gnu/1d-2.24.s0
7121012a9000-7121012 /11b/x86_64-1inux-gnu/1d-2.24.50
71210122a000-7121012

71feddf81000-7ffeddfa2 [stack]

71fedd fbbooe-7ffeddfbf [vvar]

7Efeddfbfeoe-7ffeddfc1o [vdso]

hollowing passwd
ite ©
rite 1
rite 2
ite 3
ite 4
ite 5
rite 6
rite 7
ite 8
rite 9
rite 10
ite 11
Killing passwd's
whoani

root

From: Jann Horn <jann@thejh.net>
To: kernel-hardening@lists.openwall.com, linux-kernel@vger.kernel.oxg
Cc: Andrew Morton <akpm@linux-foundation.oxrg>,

HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>,

Vitaly Kuznetsov <vkuznets@redhat.com>,

Baoquan He <bhe@redhat.com>,

Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Subject: [RFC] kernel/panic: place an upper limit on number of oopses
Date: Tue, 12 Jan 2016 20:25:45 +0100 [thread overview]
Message-ID: <1452626745-31708-1-git-send-email-jann@thejh.net> (raw)

To prevent an attacker from turning a mostly harmless oops into an
exploitable issue using a refcounter wraparound caused by repeated
oopsing, limit the number of oopses.

I have not experimentally verified whether the attack I describe
in the comment works, but I don't see why it wouldn't.

(f_count increments through fget() use atomic_long_inc_not_zero(),
but get_file() just does a normal increment and is e.g.

used by dup_fd().)

This approach is strictly inferior to PAX_REFCOUNT, but as long
as that's not upstreamed and turned on by default, it might make
sense to at least use this patch.

Opinions?
Signed-off-by: Jann Horn <jann@thejh.net>

kernellpanic.c | R R e
1 file changed, 28 insertions(+)

Subject: [PATCH] exit: Put an upperﬁlimit on how often we can oops
Date: Mon, 7 Nov 2022 21:13:17 +0100 [thread overview]
Message-ID: <20221107201317.324457-1-jannh@google.com> (raw)

Many Linux systems are configured to not panic on oops; but allowing an
attacker to oops the system **really** often can make even bugs that look
completely unexploitable exploitable (like NULL dereferences and such) if
each crash elevates a refcount by one or a lock is taken in read mode, and
this causes a counter to eventually overflow.

The most interesting counters for this are 32 bits wide (like open-coded
refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
platforms is just 16 bits, but probably nobody cares about 32-bit platforms
that much nowadays.)

So let's panic the system if the kernel is constantly oopsing.

The speed of oopsing 2432 times probably depends on several factors, like
how long the stack trace is and which unwinder you're using; an empirically
important one is whether your console is showing a graphical environment or
a text console that oopses will be printed to.

In a quick single-threaded benchmark, it looks like oopsing in a vfork()
child with a very short stack trace only takes ~51@ microseconds per run
when a graphical console is active; but switching to a text console that
oopses are printed to slows it down around 87x, to ~45 milliseconds per
Tun.

(Adding more threads makes this faster, but the actual oops printing
happens under &die_lock on x86, so you can maybe speed this up by a factor
of around 2 and then any further improvement gets eaten up by lock
contention.)

It looks like it would take around 8-12 days to overflow a 32-bit counter
with repeated oopsing on a multi-core X86 system running a graphical
environment; both me (in an X86 VM) and Seth (with a distro kernel on
normal hardware in a standard configuration) got numbers in that ballpark.

12 days aren't *that* short on a desktop system, and you'd likely need much
longer on a typical server system (assuming that people don't run graphical
desktop environments on their servers), and this is a *very* noisy and
violent approach to exploiting the kernel; and it also seems to take orders
of magnitude longer on some machines, probably because stuff like EFI
pstore will slow it down a ton if that's active.

Signed-off-by: Jann Horn <jannh@google.com>

Project Zero

News and updates from the Project Zero team at Google

Exploiting null-dereferences in the Linux kernel

Posted by Seth Jenkins, Project Zero

For a fair amount of time, null-deref bugs were a highly exploitable kernel bug class. Back when the kernel
was able to access userland memory without restriction, and userland programs were still able to map the
zero page, there were many easy techniques for exploiting null-deref bugs. However with the introduction of
modern exploit mitigations such as SMEP and SMAP, as well as mmap min addr preventing unprivileged
programs from mmap'ing low addresses, null-deref bugs are generally not considered a security issue in
modern kernel versions. This blog post provides an exploit technique demonstrating that treating these bugs
as universally innocuous often leads to faulty evaluations of their relevance to security.

Conclusions

Innocuous bugs can be exploitable for subtle reasons. Identify side-effects of
even “obviously” unexploitable bugs.

Ensure that the oops limit is merged down into distros (Ubuntu has it, CentOS
not yet, others?)

OR redefine null-derefs (et. al) as a security-relevant bug-class...

Outside-the-box thinking is particularly valuable for exploit strategies and can
make even the impossible possible.

Questions?

