
Seth JenkinsGoogle Project Zero

Exploiting null-
derefs

Doing the impossible in the Linux kernel
(Very very slowly)

whoami

The Bug

Refcount Attacks

Getting to Root

Patch Story

01

02

03

04

05

Agenda

whoami
01

Seth Jenkins
● Information Security Engineer at Google Project Zero
● Primarily Linux and Android kernel research
● Focusing on LPE’s (get to root without a password!)
● Love to turn bad bugs into good exploits

The Bug
02

● The edge-case of the empty process
● A process usually has VMAs (virtual memory areas) that

describe the virtual memory used by the process
● …but VMAs are not required by Linux for a “valid” process

Kernel Oops

What happened?

priv->mm->mmap == NULL

mm->mmap points to the first
vma for the associated task.
If a process has no vma’s…

Null–deref sends kernel to oops
path which calls
make_task_dead, ending the
task
Another boring bug…

Submit and fix…

Oh no, what have I done?!?
Isn’t it great that kernel code can’t be unexpectedly aborted like userland can?

If a task could get a “signal” in the middle of a syscall and the syscall code
suddenly ends without cleanup, that’d lead to so many bugs!

A horrible realization…

oops + make_task_dead does exactly this…

Task refcount increment

mm refcount increment

mm read lock

(not shown) seq file fdget and
mutex

dereference

mm read unlock

mm refcount decrement

Task refcount decrement

Task refcount increment

mm refcount increment

mm read lock

(not shown) seq file fdget and
mutex

Null dereference

Goto make_task_dead

Everything else skipped!!

Refcount Attacks
03

Spurious refcount increments and decrements can be exploitable issues

Over-decrement -> freeing object while references still exist a.k.a UAF

Over-increment -> repeated over-increment can cause refcount
overflow, after which refcount increment+decrement can free object
also UAF (except for saturating refcounts)

Oops effects:
1. The struct file associated seq_file’s mutex will forever be locked
2. The associated struct file will have a reference permanently held if

fdget took a reference
3. The task struct associated with the smaps_rollup file (aka the no-vma

task) will have a refcount leaked
4. The mm_struct’s mm_users refcount associated with the no-vma task will

be leaked
5. The mm_struct’s mmap lock will be permanently readlocked

Useless; future refcount leaks require locking seq_file mutex

Useless

Useless; Uses saturating refcount

Useless
Useful?

Overflowing the refcount
Trigger a Linux kernel oops enough times to overflow the refcount; ~232 times!

● We must be able to trigger the oops without causing memory leaks
○ We must destroy every opened smaps_rollup struct file

■ smaps_rollup must be read from a single-threaded process so fdget doesn’t
take a refcount

■ fd must be closed after oops (the associated seq_file mutex is permanently
locked). This happens automatically when make_task_dead tears down the fdtable

○ We leak the no-vma task refcount which is a “memory leak”
■ But the “leak” only happens on the first smaps_rollup read. The future refcount

leaks are on the same “memory leaked” task
○ We leak the mm refcount which is a “memory leak”

■ But it’s what we’re trying to overflow anyway

Timing
We must be able to trigger the oops quickly (232 times is a lot of times)

1 oops 232 oops’s (multithreaded)

Serial console (Qemu) ~45 ms 2+ years

GUI (vanilla Debian) ~.5 ms ~8 days

Overflowing the refcount
Task A

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

Task B

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

fork PTRACE_TRACEMETask B (ptraced)

refcount: 1

mm->

refcount: 1

files->

[none]

refcount: 1

…

munmap

Overflowing the refcount
Task A

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

Task B (SIGSEGV)

refcount: 1

mm->

refcount: 1

files->

[none]

refcount: 1

…

fork Task C

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

open(/proc/B/smaps_rollup,...)

/proc/B/sma
ps_rollup

refcount:
1

Overflowing the refcount
Task A

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

Task B (SIGSEGV)

refcount: 2

mm->

refcount: 2

files->

[none]

refcount: 1

…

Task C

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

read(/proc/B/smaps_rollup,...)

/proc/B/sma
ps_rollup

refcount:
1

make_task_dead(...)
Task C

refcount: 0

mm->

refcount: 0

files->

vmas

refcount: 0

…

refcount:
0

Overflowing the refcount
Task A

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

Task B (SIGSEGV)

refcount: 2

mm->

refcount: 2

files->

[none]

refcount: 1

…

Task C

refcount: 1

mm->

refcount: 1

files->

vmas

refcount: 1

…

/proc/B/sma
ps_rollup

refcount:
1

Task B (SIGSEGV)

refcount: 3

mm->

refcount: 3

files->

[none]

refcount: 1

…

open/read/make_task_dead

Overflowing the refcount
One small hiccup…

Task refcount is saturating…does that matter? We can avoid it…
Task B (SIGSEGV)

refcount: 0xFFFFFFFF

mm->

refcount: 0xFFFFFFFF

files->

[none]

refcount: 1

…

Overflowing the refcount
One small hiccup…

Task refcount is saturating…does that matter? We can avoid it…
Task B (SIGSEGV)

refcount: 0x7FFFFFFF

mm->

files->

refcount: 1

…

Task D (?)

refcount: 0x80000000

mm->

refcount: 0xFFFFFFFF

files->

[none]

refcount: 1

…

Overflowing the refcount
One small hiccup…

Task refcount is saturating…does that matter? We can avoid it…
Task B (SIGSEGV)

refcount: 0x7FFFFFFF

mm->

files->

refcount: 1

…

Task D (?)

refcount: 0x80000000

mm->

refcount: 0xFFFFFFFF

files->

[none]

refcount: 1

…

Overflowing the refcount

Task B (SIGSEGV)

refcount: 0x7FFFFFFF

mm->

refcount: 0xFFFFFFFF

files->

[none]

refcount: 1

…

Overflowing the refcount

Task B (SIGSEGV)

refcount: 0x80000000

mm->

refcount: 0x0

files->

[none]

refcount: 1

…

In order to free the mm, we mmget
and mmput

E.g. Task A open’s and close’s
/proc/B/mem

refcount: 0x1

On Linux kernel after 64591e8605 (“mm: protect free_pgtables with
mmap_lock write lock in exit_mmap”), exit_mmap takes the mmap
write lock. (5.17+)

Still exploitable, but need to take advantage of unintended concurrence of
__mmput calls to cause a double free

…it’s a pain.

Thankfully, on the version of Ubuntu I was looking at, the mmap lock is *not*
taken in write mode.

mm gets freed all the way, yay!

Getting to root
04

What is an mm?
The mm tracks (among other things) the virtual memory layout of the process

- Virtual Memory Areas
- Location of .text/.data etc.
- Mutexing

mm’s also come from their own kernel slab cache

UAF Exploit strategies
● Cross-cache?
● Create arb-rw?
● Other classic UAF exploit?
● Easiest strategy - replace the mm with an mm for a more privileged process

Attacker task will share an mm with a privileged process

What attacker task? The task which previously had no vma’s

➔ More generic exploit strategy - replace a boring version of an object with a
highly privileged version of that same type of object

Replacement strategy
Current status:

● The mm was just freed
● The attacker task is frozen in segfault tracing stop

What next?

● Reclaim mm by execve’ing passwd from a lot of processes, spraying new
privileged mm structs.
○ Since the mm was allocated a long time (8 days!) ago, the slab containing the mm probably

isn’t going to be the per-cpu active slab
● Allocate enough processes to drain the percpu slab freelist, and allocate

from the percpu partial lists.

A problematic process
Now I have an attacker task that:

- Previously had no vma’s
- Is segfaulted
- Has zero understanding of the virtual memory layout it’s in

…what do I do with such a task?

Open /proc/pid/mem from another attacker task!

ProcFS crash course
Each process on Linux has a directory with files that describe and allow
interactions with the respective process.

show_smaps_rollup is one of these files.

mem is another per-process ProcFS file that when opened represents the virtual
memory of the process.

Virtual memory can be “selected” with lseek, then read/written using read(2)
and write(2)

Opening the mem of a child process from the parent is allowed by ptrace Yama
as long as uid’s/gids are the same, SELinux allows ptrace, and…

A problematic process
…if the process is dumpable.
The process will not be
dumpable, since it is a SUID
process’s mm.

However, a process can
always open its own mem

We don’t have memory
rw, but we can
read/write the task’s
registers (thanks ptrace)

A problematic process
This task is in a nigh unrunnable state…

So let’s use another task (in practice just use task D we made to split task refcounts):

- Shares the mm with the other process which munmap’d
- But instead of being SEGFAULT’d after munmap…
- We ptrace syscall stop on syscall entry to an mmap of shellcode
- Wait for mm free and reclaim
- Release the process into the mmap syscall, mapping shellcode into the

privileged/attacker process’s virtual memory
- This process can open /proc/self/mem and share it with the parent process

A recap

A recap

A recap

A recap

A recap

A recap

Final Stage: Getting to root
Now I have read/write to /proc/E/mem aka RW of passwd’s virtual memory)

No shortage of ways to complete the exploit…

While passwd is hung in the prompt:

- nop sled the entire binary image
- Append shellcode that setuid’s and execve’s /bin/sh
- Send POSIX signal to passwd that causes signal handler to fire, jumping into

binary image.

Conclusions
Innocuous bugs can be exploitable for subtle reasons. Identify side-effects of
even “obviously” unexploitable bugs.

Ensure that the oops limit is merged down into distros (Ubuntu has it, CentOS
not yet, others?)

OR redefine null-derefs (et. al) as a security-relevant bug-class…

Outside-the-box thinking is particularly valuable for exploit strategies and can
make even the impossible possible.

Questions?

