Evolution of Safari mitigations

and bypasses
10S 14-15

Nikita Pupyshev 2023

Previous works on the matter
(in the order that | found them while googling)

 Attacking Safari in 2022 by Quentin Meffre (@Oxdagger) of
Synacktiv

 Attacking JavaScript engines in 2022 by Samuel Grol3 and Amy
Burnett

» JITSploitation series of posts by Samuel Grof3 (in particular the 3rd
post)

https://saelo.github.io/presentations/offensivecon_22_attacking_javascript_engines.pdf
https://saelo.github.io/presentations/offensivecon_22_attacking_javascript_engines.pdf
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

A little recap on JSC internals

Value representation

Special pointer values
Pointer { ©000:PPPP:PPPP:PPPP

/ 0002 : skkkxk & kkkk & kkkk False: Ox06
Double { . n s True: 0x07
\ FFFC:k¥kkk 2 skskkk & skkkk Undefined: 0Ox0a
Integer { FFFE:0000:IIII:IIII Null: Ox02

» A JSValue is represented as a 64-bit integer.

» Objects are pointers to instances of JSCell subclasses.

A little recap on JSC internals

Representation of objects

Source: BHEU19 Wang, Yong (@ThomasKing2014) Alibaba Security

https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf

A little recap on JSC internals

Representation of objects: Butterfly

let x ={a: 0x41, b = 0x42};
al0] = 1;
a[ufoou] — 2,

A Named

T~

. Indexed
A\

Where we at?

Assumed primitives

Butterfly R/W
Fake JSValue construction

Primitives
Butterfly R/W

» Extensively covered in numerous talks.

» You point the butterfly of an object somewhere before or
right at your target address.

» You need to ensure that right before there are two 32-bit
values that are large enough to be your size and capacity.

Primitives

Fake JSValue construction

This is left as a task to the reader @&
(visit the Project Zero blog)

Where are we going?
Why not just write to the JIT region?

- Doesn’t work this way on newer Apple devices.

. JIT region is switched from RW to RX using a hardware
register (aka fast JIT permissions).

. void pthread jit_write_protect_np(int enabled)

- We really want to write to the JIT region.

What do we do next?

PAC bypass

What produces signed pointers from unsigned data?

 dlsym produces pointers from export trie; <- easy way

» Objective-C runtime extracts pointers to message
implementations from metadata sections;

» Pointers in __got (Global Offset Table) sections are called
without a PAC check.

tomGetterSetterFunction

Allowed to call a function pointer with up to 4 controlled
arguments.

Allowed to retrieve the returned value.

Had some limitations we will need to bypass.
Later split into getter and setter parts in 2b233c8.
Brutally killed in 757f991.

https://github.com/WebKit/WebKit/commit/2b233c817da0dcd5b5c9e062f805f3919bb36bc5
https://github.com/WebKit/WebKit/commit/757f991622c717f67e075f197f7116b431a5376a

JSCustomGetterSetterFunction

class JSCustomGetterSetterFunction : public JSFunction {
enum class Type { Getter = 0, Setter = 1 };

WriteBarrier<CustomGetterSetter> m_getterSetter;
Type m_type;
PropertyName m_propertyName;

}s

JSCustomGetterSetterFunction

class CustomGetterSetter : public JSCell {

using CustomGetter
using CustomSetter

GetValueFunc;
PutValueFunc;

CustomGetter m_getter;
CustomSetter m_setter;

JSCustomGetterSetterFunction

using GetValueFunc = EncodedJSValue(JIT_OPERATION_ATTRIBUTES*)(
JSGlobalObject*, EncodedJSValue, PropertyName

) ;

using PutValueFunc = bool (JIT_OPERATION_ATTRIBUTES*)(
JSGlobalObject*, EncodedJSValue, EncodedJSValue, PropertyName

) ;

JSCustomGetterSetterFunction

Construction

let a
let b

window. _lookupGetter__("name");

window. _ lookupSetter__("name");

Any r/w window property works.

JSCustomGetterSetterFunction

Getters

- - = = Raw value
........... JdSValue

tomGetterSetterFunction

Getter restrictions

e customGetterFunctionCall dereferences the first
argument, it must be a valid pointer.

« The returned value is treated as a JSValue and in case it
Is a pointer the JSC's profiler will record it into one of its
buckets and later crash.

JSCustomGetterSetterFunction

Setters

- - = = Raw value
........... JdSValue

‘omGetterSetterFunction

Setter notes

» The first argument may be something other than a
pointer, no longer dereferenced.

- No way to get the returned value.

- 2nd and 3rd arguments are JSValue and will thus be
profiled if these are pointers.

SCustomGetterSetterFunction
Avoiding the profiler with TBI

- TBI (Top Byte Ignore) allows pointers to have any data in the top 8 bits.
- Double JSValues can be used to pass pointers as function arguments.

« Not useful with objc_msgSend bc of how ObjC selectors work.

Pointer { ©000:PPPP:PPPP:PPPP
/ D002 = skxkkk = skkksk = kkskok

Double {
\ FFFC:kkskok 2 skkokk & skokskk

Integer { FFFE:0000:IIII:IIII

PAC bypass

dlsym: the easy way?

PAC bypass

The solution

 Calling mmap with an address of any region in the DSC with

MAP_FIXED will replace this region with newly allocated zeroed out
pages.

» Call mmap on a page belonging to an export table of a target library.

» Restore the contents of the pages while patching an offset of any
function to another one.

 Call dlsym with a handle to that library.

. Profit! A pointer to an arbitrary location signed with key IA ctx O.

PAC bypass

Needed function pointers

. dlopen - exists in DSC at the time ¥
. dlsym - exists in DSC at the time ¥
. memmove - exists in DSC at the time ¥

- mmap - not directly available in DSC

PAC bypass

Solving mmap issue

tnline void vmZeroAndPurge(void* p, size_t vmSize, VMTag usage)

{

vmValidate(p, vmSize);

vold* result = mmap(
p, vmSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_FIXED | BMALLOC_NORESERVE,
static_cast<int>(usage), 0

)5

RELEASE_BASSERT(result == p);

PAC bypass

Solving mmap issue

vold* trylLargeZeroedMemalignVirtual(
size_t requiredAlignment, size_t requestedSize, HeapKind kind

) 1

Heap& heap = PerProcess<PerHeapKind<Heap>>::get()->at(kind);

result = heap.allocatelLarge(
lock, alignment, size, FatlureAction::ReturnNull);

1f (result)
vmZeroAndPurge(result, size);
return result;

PAC bypass

Solving mmap issue

. Allocating a large buffer from a Heap will lead to mmap
being called on it.

» Gigacage happens to be managed by a Heap.
- Wasm.Memory objects are allocated from the Gigacage.

» Modifying the allocator’s freelist will give us our mmap
primitive.

PAC bypass

(Ab)using the allocator

LargeMap
Range 1
Range 2

PAC bypass

Needed function pointers

. dlopen - exists in DSC at the time ¥
. dlsym - exists in DSC at the time ¥
. memmove - exists in DSC at the time ¥

. mmap - abuse the memory allocator ¥

Writing to the JIT region

NSInvocation yet again

« We can call arbitrary functions now.

- We want to chain pthread jit_write_protect_np and memcpy calls.

- Create a fake NSArray of 3 fake NSInvocation objects and call
makeObjectsPerformSelector: selector on the array.

» Custom function pointer is passed by nesting into another
invocation that calls invokeWithIMP:.

The technigue is stolen from Hack Different: Pwning iOS 14 with Generation Z Bugz by Zhi Zhou and Jundong Xie.

https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug-wp.pdf

Writing to the JIT region

NSInvocation before ~14.3

struct NSInvocation {
Class *1sa;
vold *_frame;
vold *_retdata;
NSMethodStignature *_signature;

ultnt32_t _magicCookile;

Writing to the JIT region

Chaining invocations

NSArray

NSiInvocation

NSiInvocation
_invokeWithIMP: S

pthread_jit_write_protect_np enabled =0
NSInvocation NSInvocation
_invokeWithIMP:memcpy dst, src, size

NSiInvocation

invokeWithIMP: ——
pthread_jit_write_protect_np

NSiInvocation
enabled = 1

Writing to the JIT region

Avoiding crashes

Our JS in JSC
runtime

V1

JIT compiled
thunk

Evolution

Bypassing new mitigations

NSInvocation after ~14.3

struct NSInvocation {
Class *1sa;
vold *_frame;
vold *_retdata;
NSMethodSignature *_stignature;

vold *_signedSelf;
vold *_signedSelector;
ultnt32_t _magicCookile;

Bypassing new mitigations

NSInvocation after ~14.3

X1, SP, #0x50+var _48
X0, X19
w2, #1

" __NSIGetArgumentAtIndex
_signedSelf and X16, [X19,#0x38]

_signedSelector can be set X17, X16

X16, X19

to NULL to avoid the PAC X17

X16, X17
check loc. 180331D0C

#0xC472

Tar 10AA221T1NNACC

Bypassing new mitigations
JIT hardening in 14.4

pthread jit_write_protect_np is inlined, impossible to obtain a
pointer using dlsym.

Use the legit JIT API to construct a trampoline that calls the end of
any MacroAssemblerARM64 method that appends an instruction.

Use LinkBuffer::linkCode to copy the code to the JIT region.

Use AssemblerARM64::relinkJump to point a JIT-compiled
function to that code.

Bypassing new mitigations
JIT hardening in 14.5

« MacroAssemblerARM64::farJump now requires a pointer
PAC-signed with key IB and context 18705, like
InternalFunction.

 Use InternalFunction constructor to resign the pointer from
key IA ctx O.

Bypassing new mitigations

NSInvocation after ~15.0

 Setting _signedSelf to NULL no longer works.

 Setting one of the top bits does though since taggead
Objective-C values exist.

« Same for _signedSelector, but not checked in case the
method signature’s second argument is not a selector.

. |SA pointer is now signed. An object may be constructed by
obtaining selector implementations.

Bypassing new mitigations

NSInvocation after ~15.1

- Most of the fields are signed with PACGA now.

- Arguments can still be set by calling the implementation of
setArgument:atindex:.

- Need to create an NSMethodSignature now with a large
enough number of arguments.

Bypassing new mitigations

Other mitigations

. Little changes in how AssemblyBuffers work, signing in one

thread and linking in another isn’t possible anymore. Doesn’t
affect this flow at all.

« Some static function pointers were removed. Either replaced

by gadgets or taken from the heap buffers they were moved
INto.

. Introduction of libpas forced to find a new way to call mmap.

Effective Mitigations

Removing function call primitives

Apply C++ type safety to Lookup.h's HashTableValue's ValueStorage union.

https://bugs.webkit.org/show bug.cgi?71d=243680
<rdar://problem/98206776>

Reviewed by Saam Barati.

using GetValueFunc = EncodedJSValue(JIT_OPERATION_ATTRIBUTES*) (JSGlobalOb-
using GetValueFuncWithPtr = EncodedJSValue(JIT_OPERATION_ATTRIBUTES*) (JSG
using GetValueFunc = TypedFunctionPtr<GetValueFuncPtrTag, EncodedJSValue(.
FunctionAttributes::JITOperation>;

using GetValueFuncWithPtr = TypedFunctionPtr<GetValueFuncWithPtrPtrTag, Er

https://github.com/WebKit/WebKit/commit/757f991622c717f67e075f197f7116b431a5376a

Effective Mitigations

Removing function call primitives

« PAC is strong if applied universally and with different contexts/keys/
diversifiers.

» This will be bypassable one way or another via non-obvious means.

Effective Mitigations
TPRO

if (options & PMAP_OPTIONS_ MAP_TPRO) {
pte = pmap_construct_pte(
pmap, v, pa, VM_PROT_RORW_TP, fault_type, wired, pt_attr, &pp_attr_bits);
} else {
pte = pmap_construct_pte(
pmap, v, pa, prot, fault_type, wired, pt_attr, &pp_attr_bits);

Effective Mitigations
TPRO

- A new hardware mitigation.

» Prevents regions that are initially RW but set to RO by adyla
from being remapped.

« Uses SPRR to remap execute-only permissions to read-only.

 Little information available.

Effective Mitigations

What else can be done?

» Reduce the amount of code present in a process’
address space (whole DSC is mapped).

- Move to safe languages where possible.

400 T-Moblle Wi-Fj = =-aames ‘SR\

QS'MU- Ny wevwen ‘-pfo

Mol rachelstar. @ Apple clippy r34 ..

.

WARNING!! ;
APPLE SECURITY BREACH!!
I0S SECURITY CRASH

Improvea
Security

Pwned
Ox1acb1337aa

Call +1-866-339-7833 immediately to connect with
Apple Technical Support for installing the

Protection Software

