
Evolution of Safari mitigations
and bypasses

Nikita Pupyshev 2023

iOS 14-15

Introduction

Previous works on the matter
(in the order that I found them while googling)

• Attacking Safari in 2022 by Quentin Meffre (@0xdagger) of
Synacktiv

• Attacking JavaScript engines in 2022 by Samuel Groß and Amy
Burnett

• JITSploitation series of posts by Samuel Groß (in particular the 3rd
post)

• …

https://saelo.github.io/presentations/offensivecon_22_attacking_javascript_engines.pdf
https://saelo.github.io/presentations/offensivecon_22_attacking_javascript_engines.pdf
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

A little recap on JSC internals
Value representation

Special pointer values

• A JSValue is represented as a 64-bit integer.

• Objects are pointers to instances of JSCell subclasses.

A little recap on JSC internals
Representation of objects

Source: BHEU19 Wang, Yong (@ThomasKing2014) Alibaba Security

https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf

A little recap on JSC internals
Representation of objects: Butterfly

Where we at?
Assumed primitives

Butterfly R/W

Fake JSValue construction

Primitives
Butterfly R/W

• Extensively covered in numerous talks.

• You point the butterfly of an object somewhere before or
right at your target address.

• You need to ensure that right before there are two 32-bit
values that are large enough to be your size and capacity.

Primitives
Fake JSValue construction

This is left as a task to the reader 😉

(visit the Project Zero blog)

Where are we going?
Why not just write to the JIT region?

• Doesn’t work this way on newer Apple devices.

• JIT region is switched from RW to RX using a hardware
register (aka fast JIT permissions).

• void pthread_jit_write_protect_np(int enabled)

• We really want to write to the JIT region.

What do we do next?

PAC bypass
What produces signed pointers from unsigned data?

• dlsym produces pointers from export trie; <- easy way

• Objective-C runtime extracts pointers to message
implementations from metadata sections;

• Pointers in __got (Global Offset Table) sections are called
without a PAC check.

• All of these rely on RO memory being RO to be secure.

• Messing with any of these requires us to call a function.

JSCustomGetterSetterFunction

• Allowed to call a function pointer with up to 4 controlled
arguments.

• Allowed to retrieve the returned value.

• Had some limitations we will need to bypass.

• Later split into getter and setter parts in 2b233c8.

• Brutally killed in 757f991.

https://github.com/WebKit/WebKit/commit/2b233c817da0dcd5b5c9e062f805f3919bb36bc5
https://github.com/WebKit/WebKit/commit/757f991622c717f67e075f197f7116b431a5376a

JSCustomGetterSetterFunction

JSCustomGetterSetterFunction

JSCustomGetterSetterFunction

JSCustomGetterSetterFunction
Construction

Any r/w window property works.

JSCustomGetterSetterFunction
Getters

JSCustomGetterSetterFunction
Getter restrictions

• customGetterFunctionCall dereferences the first
argument, it must be a valid pointer.

• The returned value is treated as a JSValue and in case it
is a pointer the JSC’s profiler will record it into one of its
buckets and later crash.

JSCustomGetterSetterFunction
Setters

JSCustomGetterSetterFunction
Setter notes

• The first argument may be something other than a
pointer, no longer dereferenced.

• No way to get the returned value.

• 2nd and 3rd arguments are JSValue and will thus be
profiled if these are pointers.

JSCustomGetterSetterFunction
Avoiding the profiler with TBI

• TBI (Top Byte Ignore) allows pointers to have any data in the top 8 bits.

• Double JSValues can be used to pass pointers as function arguments.

• Not useful with objc_msgSend bc of how ObjC selectors work.

PAC bypass
dlsym: the easy way?

PAC bypass
The solution

• Calling mmap with an address of any region in the DSC with
MAP_FIXED will replace this region with newly allocated zeroed out
pages.

• Call mmap on a page belonging to an export table of a target library.

• Restore the contents of the pages while patching an offset of any
function to another one.

• Call dlsym with a handle to that library.

• Profit! A pointer to an arbitrary location signed with key IA ctx 0.

PAC bypass
Needed function pointers

• dlopen - exists in DSC at the time ✅

• dlsym - exists in DSC at the time ✅

• memmove - exists in DSC at the time ✅

• mmap - not directly available in DSC ❌

PAC bypass
Solving mmap issue

PAC bypass
Solving mmap issue

PAC bypass
Solving mmap issue

• Allocating a large buffer from a Heap will lead to mmap
being called on it.

• Gigacage happens to be managed by a Heap.

• Wasm.Memory objects are allocated from the Gigacage.

• Modifying the allocator’s freelist will give us our mmap
primitive.

PAC bypass
(Ab)using the allocator

PAC bypass
Needed function pointers

• dlopen - exists in DSC at the time ✅

• dlsym - exists in DSC at the time ✅

• memmove - exists in DSC at the time ✅

• mmap - abuse the memory allocator ✅

Writing to the JIT region
NSInvocation yet again

• We can call arbitrary functions now.

• We want to chain pthread_jit_write_protect_np and memcpy calls.

• Create a fake NSArray of 3 fake NSInvocation objects and call
makeObjectsPerformSelector: selector on the array.

• Custom function pointer is passed by nesting into another
invocation that calls _invokeWithIMP:.

The technique is stolen from Hack Different: Pwning iOS 14 with Generation Z Bugz by Zhi Zhou and Jundong Xie.

https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug-wp.pdf

Writing to the JIT region
NSInvocation before ~14.3

Writing to the JIT region
Chaining invocations

Writing to the JIT region
Avoiding crashes

Profit
JIT is pwned

Evolution

Bypassing new mitigations
NSInvocation after ~14.3

Bypassing new mitigations
NSInvocation after ~14.3

_signedSelf and
_signedSelector can be set
to NULL to avoid the PAC
check.

Bypassing new mitigations
JIT hardening in 14.4

• pthread_jit_write_protect_np is inlined, impossible to obtain a
pointer using dlsym.

• Use the legit JIT API to construct a trampoline that calls the end of
any MacroAssemblerARM64 method that appends an instruction.

• Use LinkBuffer::linkCode to copy the code to the JIT region.

• Use AssemblerARM64::relinkJump to point a JIT-compiled
function to that code.

Bypassing new mitigations
JIT hardening in 14.5

• MacroAssemblerARM64::farJump now requires a pointer
PAC-signed with key IB and context 18705, like
InternalFunction.

• Use InternalFunction constructor to resign the pointer from
key IA ctx 0.

Bypassing new mitigations
NSInvocation after ~15.0

• Setting _signedSelf to NULL no longer works.

• Setting one of the top bits does though since tagged
Objective-C values exist.

• Same for _signedSelector, but not checked in case the
method signature’s second argument is not a selector.

• ISA pointer is now signed. An object may be constructed by
obtaining selector implementations.

Bypassing new mitigations
NSInvocation after ~15.1

• Most of the fields are signed with PACGA now.

• Arguments can still be set by calling the implementation of
setArgument:atIndex:.

• Need to create an NSMethodSignature now with a large
enough number of arguments.

Bypassing new mitigations
Other mitigations

• Little changes in how AssemblyBuffers work, signing in one
thread and linking in another isn’t possible anymore. Doesn’t
affect this flow at all.

• Some static function pointers were removed. Either replaced
by gadgets or taken from the heap buffers they were moved
into.

• Introduction of libpas forced to find a new way to call mmap.

Effective Mitigations
Removing function call primitives

https://github.com/WebKit/WebKit/commit/757f991622c717f67e075f197f7116b431a5376a

Effective Mitigations
Removing function call primitives

• PAC is strong if applied universally and with different contexts/keys/
diversifiers.

• This will be bypassable one way or another via non-obvious means.

Effective Mitigations
TPRO

Effective Mitigations
TPRO

• A new hardware mitigation.

• Prevents regions that are initially RW but set to RO by dyld
from being remapped.

• Uses SPRR to remap execute-only permissions to read-only.

• Little information available.

Effective Mitigations
What else can be done?

• Reduce the WebContent attack surface (introduction of
the GPU process).

• Reduce the amount of code present in a process’
address space (whole DSC is mapped).

• Move to safe languages where possible.

Demo

Questions?

