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Whoami

● nedwill, Project Zero Researcher
● Focus on fuzzing and memory corruption vulnerabilities
● Today, we'll explore how machine learning, particularly transformers, can 

revolutionize the field of fuzzing and vulnerability research.



Key Questions

● How can we automate vulnerability research more effectively?
● What are the limitations of traditional fuzzing techniques?
● Can machine learning, specifically transformers, offer a new paradigm in 

fuzzing?



Background and Challenges in Vulnerability 
Research



The Multi-Layered Problem in Vulnerability Research

● Identifying a goal (e.g., remote code execution)
● Deciding on a method (e.g., finding a memory corruption vulnerability)
● Defining properties about security and safety
● Searching for violations by auditing and/or using computational methods



Vulnerability Research as Constrained Optimization

Achieve 
Unauthorized Access

Exploit App Vulns

Target CPU Target Software

Parsers APIs Race Conditions Binaries

WebP Chrome Sandbox XNU

Spectre / Meltdown Zenbleed

Even at the level of 
parsers, verification is 
undecidable/NP-hard



Complexity and Decidability Constraints

● Proving safety w.r.t. a security property in a Turing complete language is 
reducible to SAT for many properties, i.e. it is NP-hard

● These are fundamental barriers that this presentation won't overcome



Complexity and Decidability Constraints

● Vuln research aims to expose frequent security flaws in programs, which are 
often far from provably secure.

● The objective is to disprove security by finding a counterexample (bad input), 
making it a tractable search problem in many cases.

● Due to the lack of formally proven complex software, we rely on empirical 
evidence to assess safety, especially when language type systems don't 
guarantee it.



Approximation and Heuristics: The Power of Randomness

● Approximation algorithms for NP-hard problems provide value in practice
● Randomized algorithms can provide near-optimal solutions
● Similarly, many vulnerabilities are "shallow" and can be found with a 

randomized search (fuzzing!)



Traditional Approaches to Fuzzing



AFL: Pioneering Work in Smart Fuzzing

● Coverage-guided genetic algorithm
● We don’t just try random inputs: we learn from the behavior
● We provide a reward function (edge hitcounts, comparisons, etc.)
● Mutate and evolve a corpus that maximizes global coverage reward
● Explores and learns a suite of inputs



“Pulling JPEGs Out of Thin Air”

Zalewski, M. (2014, November 7). Pulling JPEGs out of thin air. lcamtuf's blog. 
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html



AFL’s Approach

● Heuristic-based policy drives input generation
● Reward

○ Coverage map
● State

○ Global coverage map, as well as a collection of saved inputs with known (data, covered 
edges)

● Action
○ Select a test case at random and apply a mutation, if we have a reward (more coverage than 

known state) we save the input into our state



Fuzzing Research since 2014

● Reward*
○ Come up with new features
○ e.g. Centipede supports control flow edges, data flow edges, bounded control flow paths, 

instrumented CMP instructions
● Action*

○ Improve the mutation quality to select from input space better according to researcher insight 
(protobuf-mutator)



AFL is playing a Markov Decision Process Game

● Reward
● State
● Action
● Partially Observable Markov Decision Process. A framework for 

decision-making with partial observability, relevant for fuzzing where we can’t 
trivially predict the state of the program for a given input.

● The attempt to learn a good policy for exploring a POMDP is the goal of 
model-free reinforcement learning.

● AFL as-is is well represented by the multi-armed bandit sub-problem: no state 
space (only prior knowledge), single-stage decision making, simpler policy



AFL(LibFuzzer/Centipede)’s Policy

● Hard-coded, based on human intuition and experience (very successful!)
● Mostly based on mapping each (input, observed features) pair to a weight
● Weighted random selection is then employed



AFL’s Shortcomings

● Reward: We want bugs, not coverage.
● State: Do we need to memorize every input we see? Might there be insights 

in test cases we discard, wasting execution cycles that revealed sub-feature 
granularity observations that a human might find useful?

● Action: is mutating a known test case the correct way to generate an input?
● Policy: we are generally limited to features that scale linearly since we treat 

features opaquely



AFL’s Shortcomings

● Overfitting: AFL tends to over-rely on its existing corpus of test cases, leading 
to a narrow exploration of the potential vulnerabilities in a target system.

● Underfitting: Despite its capabilities, AFL does not harness enough 
information to develop a sufficiently expressive generative model for test 
cases, limiting its coverage and bug discovery rate.

● Efficiency: AFL is designed to keep track of all past inputs, leading to resource 
inefficiencies and further exacerbating the issue of overfitting. AFL is more 
akin to gzip than GPT for compressing a model of the program’s behavior: 
don’t learn a generative distribution-matching representation, just explore and 
record a min set that covers the code while preserving perfect information 
about how to reach the paths in question.



Trying to Abstract the Problem

● Reward
○ Bug

● State
○ Previously found bugs, compressed representation of previous inputs, behavior, and static 

program information (source/binary)
● Action

○ Generate new input string
● Policy

○ Q-Learning, Decision Transformer, etc.



RL Formulation Issues

● State Space: The state space in fuzzing is expansive and can vary in size 
depending on the target application or even during individual runs if dynamic 
tracing is utilized.

● Action Space: The range of possible actions is broad and doesn't easily fit 
into a single 'token' as traditionally understood in RL. This is because the 
actions can involve creating any number of unique strings as inputs. While 
AFL narrows down this action space by selecting and modifying test cases, it 
does so at the expense of expressiveness and presupposes a collection of 
test cases.

● Sparse Rewards: The infrequency of discovering new vulnerabilities makes 
reward signals sparse, complicating the RL agent's learning process. This is a 
foundational problem in the reinforcement learning community.



Machine Learning Warmup



The Current Tech Zeitgeist: Generative AI

● Exciting, but induces skepticism in VR types
● ML historically hasn't made a big impact with bug discovery
● My thesis: Transformers may change this
● Effective sequence modelling has parallels to static vs. dynamic analysis

○ What makes static analysis hard to scale probably also made earlier ML attempts ineffective
○ What makes dynamic analysis easier to scale probably makes sequence models a better fit



Types of Machine Learning

● Supervised Learning: Learning from labeled data.
● Unsupervised Learning: Learning from unlabeled data.
● Reinforcement Learning: Learning by interacting with an environment to 

achieve a goal.
● Self-supervised Learning: Learning from unlabeled sequence data by 

predicting future tokens as the supervision.



Relationship with Vulnerability Research

● Traditional methods in vulnerability research often involve manual code 
review, static and dynamic analysis.

● Machine learning offers automated, data-driven approaches, but has 
historically had limited impact in vulnerability discovery.



Challenges in Applying ML to Vulnerability Research

● Sparse Rewards, High-Dimensional State Space, Computational Costs
● Combined world knowledge, reasoning, planning, and computation needs set 

a high bar for bug discovery.



Why Now?

● Advances in ML, particularly transformers, are accelerating and applied 
research in our domain hasn’t caught up to these changes.

● LLMs can teach me these topics! (transformers are good enough that they 
can convince me in natural language to use transformers)



Transformers: A Paradigm Shift in Computational Models

● Created in 2017, Decision Transformer (RL variant) in 2021
● Unexpectedly high performance and generality
● Simple interface: Predict an output vector from a sequence of input vectors
● Self-supervised learning is possible at very large scales
● Meta/in-context learning observable in large models



Karpathy, A. (2022, October 19). The Transformer is a magnificient neural network architecture because it is a 
general-purpose differentiable computer. It is simultaneously: 1) expressive [Tweet]. Twitter. 
https://twitter.com/karpathy/status/1582807367988654081?lang=en



Andrej Karpathy on Transformers' Flexibility

● “Transformers have been applied to various fields... even in areas like 
computational chemistry, at the heart of algorithms like AlphaFold, you'll find a 
Transformer.”

● “This simple baseline of chopping up large images into small squares and 
feeding them into the Transformer actually works fairly well.”

● “You can chop up whatever additional information you have and feed it in… 
The self-attention mechanism figures out how everything should 
communicate.”

Karpathy, A. [Stanford]. (2023, January 10). CS25I Stanford Seminar - Transformers United 2023: Introduction to 
Transformers [Video]. YouTube. https://www.youtube.com/watch?v=XfpMkf4rD6E



Decision Transformer

● Paper from 2021
● Record (reward, state, action) tuples from games
● Embed these tuples into embedding space for transformer input
● Self-supervise over trajectory of (reward to go, state, action)
● Handles long term dependencies (credit assignment) using attention 

mechanism

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., ... & Mordatch, I. (2021). Decision transformer: 
Reinforcement learning via sequence modeling. Advances in neural information processing systems, 34, 
15084-15097.



AFL + Transformers

● Out-of-the-box idea
○ Run AFL, record (reward, state, action) tuples as is.
○ Train DT on this trajectory.
○ DT can learn a better policy than the one employed by AFL even though the data only reflects 

AFL’s policy.
● Issues

○ Don’t want transformer to just memorize crashing inputs
○ AFL log can be sparse with millions of inputs
○ Potentially too low-level



Many Potential Directions

● Record full execution trace including memory read/write, mix in source 
code/binary as the program executes

○ Learn a model of program execution that can be fine-tuned or few-shot prompted to generate 
inputs that reach specific lines of code

● Record human code review behavior: what source files w/ current corpus 
coverage are reviewed in what order to inform an accurate prediction about a 
fuzz target edit to make?

○ This requires LLM-level world model, and RL-driven LLM might be doable soon (RLHF?)
● Higher-level: mix source code review with generating and executing inputs

○ Consider an agent that can browse the code or execute inputs and observe them
○ Replicate the auditing process



Datasets

● Years of artifacts to leverage
● Fuzz targets, the targets themselves, unit tests, and git histories
● Fuzz corpora (OSS-Fuzz, Chromium, etc.)
● Crashing test cases submitted to bug trackers
● Tracker comments related to root causing bugs from high level descriptions
● Source code and binary static data, currently unused beyond opaque features
● Scaling laws

○ We need to choose an underlying function well.
○ The complexity of the function to learn dictates the size of the model needed, which in turn 

dictates the quantity of high quality data needed.
○ Our goal in the near term is to identify datasets that already exist or can be generated to 

enable us to learn functions that are useful and match the scale we can afford.



Year Name Model/Architecture

2021 SyzVegas1 Multi-Armed Bandit (MAB), Exp3 algorithms

2021 Decision Transformer2 (not fuzzing related) Reinforcement Learning, Transformer architecture

9/2022 DL for Coverage-Guided Fuzzing3 FNN-3, FNN-5, RNN, Seq2Seq

12/2022 Hybrid Fuzzing with RL4 MDP with Policy Gradients

2023 Seed Scheduling with RL5 Temporal Difference (TD(0))

1/2023 Rainfuzz6 Reinforcement Learning, PPO, FFNN

7/2023 LLMs are Zero-Shot Fuzzers7 Codex (GPT-3 based), InCoder (bi-directional context)

10/2023 LLM-guided Protocol Fuzzing8 Large Language Model (LLM)

Academic research



Case Studies: Zenbleed and WebP



Zenbleed: Going Beyond Coverage

● CPU vulnerability discovered by Tavis Ormandy
● Used genetic-mutation fuzzing with performance counters as feedback
● Used Oracle Serialization as a validation mechanism

○ Create two versions of program where one uses serializing instructions (e.g. memory fences)
● Reveals two concerns

○ We want to expose as much information as possible about executed input and allow a learning 
algorithm to figure out what to attend to, rather than us trying to predict it a priori with 
prescriptive feature sets

○ We need to be able to recognize bugs based on a broader world model if we want to discover 
more bugs, not just ASan crashes



WebP Vulnerability: CVE-2023-4863

● Vulnerability in WebP's "lossless compression" support
● Issue with Huffman table overflow when decoding an untrusted image
● Complex state space involving valid and invalid Huffman trees
● This bug was not discovered even though a fuzz target existed
● Needed to understand how to properly structure inputs and how to create an 

unbalanced huffman tree
● Coverage was not enough fidelity to represent a hill-climbing path to this bug

Hawkes, B. (2023, September 21). The WebP 0day. Isosceles Blog. 
https://blog.isosceles.com/the-webp-0day/



Meta-security: how do we traverse this automatically?

Achieve 
Unauthorized Access

Exploit App Vulns

Target CPU Target Software

Parsers APIs Race Conditions Binaries

WebP Chrome Sandbox XNU

Spectre / Meltdown Zenbleed



Compressing a World Model

● Likely needed to automatically identify new attack surfaces and vulnerabilities
● Could be partially captured by large language models
● Extremely broad search space requiring reasoning across domains
● No data to learn from besides known bugs that clearly leads to new directions
● We’ll probably get better at fuzzing before we get better at creativity
● But generative AI has shown creative capability given enough data



Issues with Turning Towards Transformers

● Poor context length scaling
○ May not apply well to vuln research where rewards are extremely sparse

● Slow learning
○ Lots of data needed to learn properly without starting from a pre-trained model
○ Learning schedules mean we may not be able to fine-tune an existing model trivially

● Slower inference than AFL
○ It may turn out that raw throughput outperforms smarter generation

● Hardware requirements and their associated costs
● Energy consumption as an ethical and practical concern
● Maintenance and updating of models is not free



Summary of Discussion

● Vulnerability research is a rich, multi-layered optimization problem that 
presents an excellent research area for AI applications

● Its importance for security and privacy and its geopolitical relevance lend itself 
to a grand challenge for AI systems

● Transformers have had a transformative and convergent impact on ML 
research; while they have limitations, defenders should prepare early



Full Self Researching Achieved Internally

● Autonomous driving had incremental progress over the last decade, with lots 
of hand-coded architectures and logic

● Recently we see that GPTs are surprisingly capable of scene understanding
● I foresee parallels in vulnerability research: lots of incremental and potentially 

embarrassing steps forward and backward before we can go end to end



Yang, Z., Li, L., Lin, K., Wang, J., Lin, C. C., Liu, Z., & Wang, L. (2023). The dawn of LMMs: Preliminary 
explorations with GPT-4V (ision). arXiv preprint arXiv:2309.17421.



Final Thoughts

● Vulnerability research and security are important parts of the safety and ethics 
discussion for generative AI and reinforcement learning systems

● Ethical considerations and real-world constraints must guide our 
advancements

● We should engage early with the machine learning community from an 
informed standpoint to best communicate how our needs and goals overlap 
the capability of SOTA and future architectures

● The future is promising but requires a concerted, responsible effort from all 
stakeholders: researchers, practitioners, and policymakers

● My plan: continue state of the art vulnerability discovery research while 
transitioning to increasingly diverse automated methods
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