
Google Project Zero

MTE As Tested
Mark Brand POC 2023

Google Project Zero

About Me

- Security / vulnerability research for ~12 years

- Researcher at Project Zero for ~8 years

Google Project Zero

About Me

- Security / vulnerability research for ~12 years

- Researcher at Project Zero for ~8 years

Google Project Zero

About MTE

- On Pixel 8 you can configure sync MTE as the
default for most* apps today!

Google Project Zero

Enabling MTE

markbrand@markbrand$ adb shell
shiba:/ $ setprop arm64.memtag.bootctl memtag
shiba:/ $ setprop persist.arm64.memtag.default sync
shiba:/ $ setprop persist.arm64.memtag.app_default sync
shiba:/ $ reboot

Google Project Zero

Background

Google Project Zero

About MTE 64-bit virtual addressing

0x4141414141414141

Google Project Zero

About MTE 64-bit virtual addressing

0x4141414141414 141

Page
Offset

Google Project Zero

About MTE 64-bit virtual addressing

Page
Offset

0x4141 414141414 141

Page
Index

Google Project Zero

About MTE 64-bit virtual addressing

Page
Offset

Page
Index

??????

0x 4141 414141414 141

Google Project Zero

About MTE 64-bit virtual addressing

Page
Offset

Page
Index👍

0x 0000 414141414 141

Google Project Zero

About MTE 64-bit virtual addressing

Google Project Zero

About MTE 64-bit virtual addressing

Google Project Zero

About MTE

Google Project Zero

MTE and Me: Kernel Heap Protector

Google Project Zero

MTE and Me: Speculative Execution

Google Project Zero

MTE as a security
"boundary"

Google Project Zero

Direct MTE induced
speculative oracle?

Google Project Zero

Direct MTE induced
speculative oracle?

ASYNC
limitations?

Google Project Zero

Software
limitations?

Direct MTE induced
speculative oracle?

ASYNC
limitations?

Google Project Zero

Known-tag attacks
vs.

Unknown-tag attacks

Google Project Zero

Known-tag attacks
(SYNC + ASYNC)

Google Project Zero

case '1': // "Alloc"
idx = ipc_read(in_pipe);
if (idx < 0) {

break;
}

if (instances[idx]) {
instances[idx]->vtable->destructor(instances[idx]);
free(instances[idx]);

}

data = ipc_read_string(in_pipe);

instances[idx] = malloc(sizeof(struct Class));
fprintf(stderr, "instances[%i] = %p (%p)\n", idx, instances[idx], data);
Class_constructor(instances[idx], data);

break;

Google Project Zero

case '2': // "Free"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {

break;
}

if (instances[idx]) {
instances[idx]->vtable->destructor(instances[idx]);
free(instances[idx]);

}

// Bug: we don't set class to NULL, so we're left with a dangling
// pointer.

break;

Google Project Zero

case '3': // "Replace"
if (replacement) {
replacement->vtable->destructor(replacement_instance);
free(replacement);

}

data = ipc_read_string(in_pipe);

replacement = malloc(sizeof(struct ReplacementClass));
fprintf(stderr, "replacement = %p\n", replacement);
ReplacementClass_constructor(replacement, data);
data = NULL;

break;

Google Project Zero

case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !instances[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
instances[idx]->vtable->write(instances[idx], out_pipe);

}

break;

Google Project Zero

Exploit Flow: Alloc

instances[0]
Class

vtable
data

Vtable
destructor

method

stack heap .rodata

Google Project Zero

Exploit Flow: Free

instances[0]

stack heap .rodata

Class
vtable
data

Vtable
destructor

method

Google Project Zero

Exploit Flow: Replace

instances[0]

stack heap .rodata

ReplacementClass
vtable
data

Vtable
destructor

method

ReplacementVtable
destructor

method

replacement

Google Project Zero

Exploit Flow: Use (type-confusion)

instances[0]

stack heap .rodata

ReplacementClass
vtable
data

Vtable
destructor

method

ReplacementVtable
destructor

method🔥

replacement

Google Project Zero

Demo: No tagging

Google Project Zero

Exploit Flow: Alloc

instances[0]
Class

vtable
data

Vtable
destructor

method

stack heap .rodata

instances[1]
Class

vtable
data

Google Project Zero

Exploit Flow: Free

instances[0]

Vtable
destructor

method

stack heap .rodata

instances[1]
Class

vtable
data

Class
vtable
data

Google Project Zero

Exploit Flow: Replace

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

Exploit Flow: Use?

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
classes[idx]->vtable->write(classes[idx], out_pipe);

}

break;

Google Project Zero

Exploit Flow: Train

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

Exploit Flow: Train

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
classes[idx]->vtable->write(classes[idx], out_pipe);

}

break;

CPU now
expects this
branch will
always be
taken

Google Project Zero

case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
classes[idx]->vtable->write(classes[idx], out_pipe);

}

break;

CPU now
expects this
branch will
always be
taken

So, if the condition is
false, but evaluating it
is slow, we'll load
vtable speculatively.

Google Project Zero

Exploit Flow: Flush

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

Exploit Flow: Speculative Use [tag mismatch]

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

Exploit Flow: Reload

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

⏰

Google Project Zero

Exploit Flow: Speculative use [tag match]

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

Google Project Zero

Exploit Flow: Reload

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

⏰

Google Project Zero

Demo: Software tagging

Google Project Zero

Demo: Hardware tagging (MTE)

Google Project Zero

Speculation window length

- With speculative side-channels, we're (typically) using branch misprediction to
speculatively execute some instructions that do not execute architecturally.

- The number of instructions executed depends on how long it takes for the
misprediction to resolve.

- However, does CPU continue to execute if the instructions are nonsense?

- Can tag-check failure during speculation influence the length of speculation
after a failed tag-check?

Google Project Zero

ldr x0, [x0] ; this load is slow (*x0 is uncached)
cbnz x0, speculation: ; this branch is always taken during warmup
ret

speculation:
ldr x1, [x1] ; this load is fast (*x1 is cached)

; the tag-check success or fail will happen on
; this access, but during warmup the tag-check
; will always be a success.

orr x2, x2, x1 ; this is a no-op (as x1 is always 0) but it
... n times ... ; maintains a data dependency between the
orr x2, x2, x1 ; loads (and the no-ops), hopefully preventing

; too much re-ordering.

ldr x2, [x2] ; *x2 is uncached, if it is cached later then
; this instruction was (probably) executed.

ret

Google Project Zero

ldr x0, [x0] ; this load is slow (*x0 is uncached)
cbnz x0, speculation: ; this branch is always taken during warmup
ret

speculation:
ldr x1, [x1] ; this load is fast (*x1 is cached)

; the tag-check success or fail will happen on
; this access, but during warmup the tag-check
; will always be a success.

orr x2, x2, x1 ; this is a no-op (as x1 is always 0) but it
... n times ... ; maintains a data dependency between the
orr x2, x2, x1 ; loads (and the no-ops), hopefully preventing

; too much re-ordering.

ldr x2, [x2] ; *x2 is uncached, if it is cached later then
; this instruction was (probably) executed.

ret

Google Project Zero

ldr x0, [x0] ; this load is slow (*x0 is uncached)
cbnz x0, speculation: ; this branch is always taken during warmup
ret

speculation:
ldr x1, [x1] ; this load is fast (*x1 is cached)

; the tag-check success or fail will happen on
; this access, but during warmup the tag-check
; will always be a success.

orr x2, x2, x1 ; this is a no-op (as x1 is always 0) but it
... n times ... ; maintains a data dependency between the
orr x2, x2, x1 ; loads (and the no-ops), hopefully preventing

; too much re-ordering.

ldr x2, [x2] ; *x2 is uncached, if it is cached later then
; this instruction was (probably) executed.

ret

Google Project Zero

ldr x0, [x0] ; this load is slow (*x0 is uncached)
cbnz x0, speculation: ; this branch is always taken during warmup
ret

speculation:
ldr x1, [x1] ; this load is fast (*x1 is cached)

; the tag-check success or fail will happen on
; this access, but during warmup the tag-check
; will always be a success.

orr x2, x2, x1 ; this is a no-op (as x1 is always 0) but it
... n times ... ; maintains a data dependency between the
orr x2, x2, x1 ; loads (and the no-ops), hopefully preventing

; too much re-ordering.

ldr x2, [x2] ; *x2 is uncached, if it is cached later then
; this instruction was (probably) executed.

ret

Google Project Zero

Cortex-A510 (Pixel 8 small cores)

After tag-check
success in

speculation

After tag-check
failure in

speculation

Google Project Zero

Cortex-A510 (Pixel 8 small cores) 95th
percentile

median

5th percentile

After tag-check
success in

speculation

After tag-check
failure in

speculation

Google Project Zero

Cortex-A510 (Pixel 8 small cores) 95th
percentile

median

5th percentile

After tag-check
success in

speculation

After tag-check
failure in

speculation

The two graphs are
indistinguishable 👍

Google Project Zero

Cortex-A715 (Pixel 8 middle cores)

Google Project Zero

Cortex-X3 (Pixel 8 large core)

Google Project Zero

The limits of measurement

The virtual timer
on the biggest
core has really,
really poor
resolution.

A hot (l1) cache
hit has a median
access latency of
'1'

Google Project Zero

The limits of measurement

The virtual timer
on the biggest
core has really,
really poor
resolution.

A hot (l1) cache
hit has a median
access latency of
'1'

A cold (llc) cache
miss has a
median access
latency of '2'!

Google Project Zero

Is a shared memory timer better?

Google Project Zero

Is a shared memory timer better?

Google Project Zero

Is a shared memory timer better?

Google Project Zero

Is a shared memory timer better?
WHAT?!?

Google Project Zero

Realisation

- Measurements on the fastest core are noisy enough that the signal/noise ratio
is poor.

- Repeated experiments consistently show (inconsistent) results that appear to
differentiate tag-check pass and failure.

- Small-scale experiments and eyeballing graphs is not enough to be confident
about the behaviour of the fastest core.

- Proving a negative…

Google Project Zero

Unknown-tag attacks
(Mostly ASYNC)

Google Project Zero

Revisiting signal-safety…

// This function runs in a compromised context: see the top of the
file.
// Runs on the crashing thread.
// static
void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void*
uc) {

// Give the first chance handler a chance to recover from this
signal

if (g_first_chance_handler_ != nullptr &&
g_first_chance_handler_(sig, info, uc)) {

return;
}

Google Project Zero

Demo: Initial exploit

Google Project Zero

Classic exploit code

// XXX: This is a load-bearing string concatenation.
var do_not_remove = "A".concat("B");

Google Project Zero

Demo: Initial exploit reliability

Google Project Zero

Demo: Optimized exploit reliability

Google Project Zero

Google Project Zero

Questions?

