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About MTE

- On Pixel 8 you can configure sync MTE as the 
default for most* apps today!
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Enabling MTE

markbrand@markbrand$ adb shell
shiba:/ $ setprop arm64.memtag.bootctl memtag
shiba:/ $ setprop persist.arm64.memtag.default sync
shiba:/ $ setprop persist.arm64.memtag.app_default sync
shiba:/ $ reboot
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MTE and Me: Kernel Heap Protector
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MTE and Me: Speculative Execution
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MTE as a security 
"boundary"
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Known-tag attacks
vs.

Unknown-tag attacks
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Known-tag attacks
(SYNC + ASYNC)



Google Project Zero

case '1': // "Alloc"
idx = ipc_read(in_pipe);
if (idx < 0) {

break;
}

if (instances[idx]) {
instances[idx]->vtable->destructor(instances[idx]);
free(instances[idx]);

}

data = ipc_read_string(in_pipe);

instances[idx] = malloc(sizeof(struct Class));
fprintf(stderr, "instances[%i] = %p (%p)\n", idx, instances[idx], data);
Class_constructor(instances[idx], data);

break;
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case '2': // "Free"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {

break;
}

if (instances[idx]) {
instances[idx]->vtable->destructor(instances[idx]);
free(instances[idx]);

}

// Bug: we don't set class to NULL, so we're left with a dangling
// pointer.

break;
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case '3': // "Replace"
if (replacement) {
replacement->vtable->destructor(replacement_instance);
free(replacement);

}

data = ipc_read_string(in_pipe);

replacement = malloc(sizeof(struct ReplacementClass));
fprintf(stderr, "replacement = %p\n", replacement);
ReplacementClass_constructor(replacement, data);
data = NULL;

break;
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case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !instances[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
instances[idx]->vtable->write(instances[idx], out_pipe);

}

break;
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Exploit Flow: Use (type-confusion)
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Demo: No tagging
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Exploit Flow: Free
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Exploit Flow: Replace
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Exploit Flow: Use?
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case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
classes[idx]->vtable->write(classes[idx], out_pipe);

}

break;
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Exploit Flow: Train

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method



Google Project Zero

Exploit Flow: Train

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method



Google Project Zero

case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
classes[idx]->vtable->write(classes[idx], out_pipe);

}

break;

CPU now 
expects this 
branch will 
always be 
taken



Google Project Zero

case '4': // "Write"
idx = ipc_read(in_pipe);
if (idx < 0 || !classes[idx]) {
break;

}

if (ipc_write_ready(out_pipe)) {
classes[idx]->vtable->write(classes[idx], out_pipe);

}

break;

CPU now 
expects this 
branch will 
always be 
taken

So, if the condition is 
false, but evaluating it 
is slow, we'll load 
vtable speculatively.
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Exploit Flow: Flush
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Exploit Flow: Speculative Use [tag mismatch]
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Exploit Flow: Reload

instances[0]

stack heap .rodata

instances[1]
Class

vtable
data

ReplacementVtable
destructor

method

replacement

ReplacementClass
vtable
data

Vtable
destructor

method

⏰



Google Project Zero

Exploit Flow: Speculative use [tag match]
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Demo: Software tagging
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Demo: Hardware tagging (MTE)
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Speculation window length

- With speculative side-channels, we're (typically) using branch misprediction to 
speculatively execute some instructions that do not execute architecturally.

- The number of instructions executed depends on how long it takes for the 
misprediction to resolve.

- However, does CPU continue to execute if the instructions are nonsense?

- Can tag-check failure during speculation influence the length of speculation 
after a failed tag-check?
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ldr x0, [x0] ; this load is slow (*x0 is uncached)
cbnz x0, speculation: ; this branch is always taken during warmup
ret

speculation:
ldr x1, [x1] ; this load is fast (*x1 is cached)

; the tag-check success or fail will happen on
; this access, but during warmup the tag-check 
; will always be a success.

orr x2, x2, x1       ; this is a no-op (as x1 is always 0) but it
... n times ...       ; maintains a data dependency between the
orr x2, x2, x1       ; loads (and the no-ops), hopefully preventing

; too much re-ordering.

ldr x2, [x2] ; *x2 is uncached, if it is cached later then
; this instruction was (probably) executed.

ret
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ldr x0, [x0] ; this load is slow (*x0 is uncached)
cbnz x0, speculation: ; this branch is always taken during warmup
ret

speculation:
ldr x1, [x1] ; this load is fast (*x1 is cached)

; the tag-check success or fail will happen on
; this access, but during warmup the tag-check 
; will always be a success.

orr x2, x2, x1       ; this is a no-op (as x1 is always 0) but it
... n times ...       ; maintains a data dependency between the
orr x2, x2, x1       ; loads (and the no-ops), hopefully preventing

; too much re-ordering.

ldr x2, [x2] ; *x2 is uncached, if it is cached later then
; this instruction was (probably) executed.

ret
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Cortex-A510 (Pixel 8 small cores) 95th 
percentile

median

5th percentile

After tag-check 
success in 

speculation

After tag-check 
failure in 

speculation

The two graphs are 
indistinguishable 👍
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Cortex-A715 (Pixel 8 middle cores)
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Cortex-X3 (Pixel 8 large core)
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The limits of measurement

The virtual timer 
on the biggest 
core has really, 
really poor 
resolution.

A hot (l1) cache 
hit has a median 
access latency of 
'1'
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The limits of measurement

The virtual timer 
on the biggest 
core has really, 
really poor 
resolution.

A hot (l1) cache 
hit has a median 
access latency of 
'1'

A cold (llc) cache 
miss has a 
median access 
latency of '2'!
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Is a shared memory timer better?
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Is a shared memory timer better?
WHAT?!?
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Realisation

- Measurements on the fastest core are noisy enough that the signal/noise ratio 
is poor.

- Repeated experiments consistently show (inconsistent) results that appear to 
differentiate tag-check pass and failure.

- Small-scale experiments and eyeballing graphs is not enough to be confident 
about the behaviour of the fastest core.

- Proving a negative…
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Unknown-tag attacks 
(Mostly ASYNC)
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Revisiting signal-safety…

// This function runs in a compromised context: see the top of the 
file.
// Runs on the crashing thread.
// static
void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void*
uc) {

// Give the first chance handler a chance to recover from this 
signal

if (g_first_chance_handler_ != nullptr &&
g_first_chance_handler_(sig, info, uc)) {

return;
}
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Demo: Initial exploit
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Classic exploit code

// XXX: This is a load-bearing string concatenation.
var do_not_remove = "A".concat("B");
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Demo: Initial exploit reliability
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Demo: Optimized exploit reliability
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Questions?


