
One shot, Triple kill:
Pwning all three Google kernelCTF instances
with a single 1-day Linux vulnerability

Dongok Kim & SeungHyun Lee & Insu Yun
@ KAIST Hacking Lab

Agenda

- About us
- Introduction to Google kernelCTF
- The Vulnerability: CVE-2023-3390
- The Exploit:

- LTS 6.1.31 instance
- COS 105 instance
- Mitigation 6.1 instance

- Demystifying kernel exploit mitigations
- Conclusion & Takeaways

About us

Dongok Kim (@c0m0r1) SeungHyun Lee (@0x10n) Insu Yun (@insu_yun)
● Master’s student

@ KAIST Hacking Lab
● Member of KAIST GoN

● Undergrad student
@ KAIST CS & EE

● Research intern
@ KAIST Hacking Lab

● Member of KAIST GoN

● Assistant professor
@ KAIST EE & GSIS

● Leader of
KAIST Hacking Lab

https://twitter.com/c0m0r1
https://twitter.com/0x10n
https://twitter.com/insu_yun

About us

Agenda

- About us
- Introduction to Google kernelCTF
- The Vulnerability: CVE-2023-3390
- The Exploit:

- LTS 6.1.31 instance
- COS 105 instance
- Mitigation 6.1 instance

- Demystifying kernel exploit mitigations
- Conclusion & Takeaways

Introduction to Google kernelCTF

- Google kernelCTF
- Bug (exploit) bounty program for Linux kernel
- Originated from kCTF VRP

- CTF infrastructure written on top of Kubernetes
- Privilege escalation on node (kctf) or escape the node (full-chain)

- Split out exclusively for Linux kernel vulnerability and exploitation
- Inviting researchers to demonstrate their kernel exploitation techniques

- On 0-day and 1-day vulnerabilities
- In various kernel version

- Eventually making Linux kernel exploit harder
- Learnings from kCTF VRP's 42 Linux kernel exploits submissions

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html

Introduction to Google kernelCTF

LTS

LTS Instance
- Newest LTS kernel
- Max $71,337 payout

COS Instance
- Kernel used in GKE
- Max $21,000 payout

Mitigation Instance
- Kernel with custom mitigation
- Max $21,000 payout

Introduction to Google kernelCTF

- Flag-oriented submission
- Need full exploit (LPE + container escape) to read flag
- Exploit & writeup publication is mandatory

- N-day is completely allowed
- Additional “bonus” if submission uses 0-day (20,000$)

- Novel techniques
- Irrelevant with vulnerabilities
- 0$ ~ 20,000$ payout

Agenda

- About us
- Introduction to Google kernelCTF
- The Vulnerability: CVE-2023-3390
- The Exploit:

- LTS 6.1.31 instance
- COS 105 instance
- Mitigation 6.1 instance

- Demystifying kernel exploit mitigations
- Conclusion & Takeaways

- Vulnerability & Exploit Timeline

2023-06-08
Vuln patch commit
on net-next & mainline

2014-05-19
Vuln introduced

The Vulnerability - CVE-2023-3390

2023-06-20~21
Exploit crafted for
v6.1.31 & COS-105

2023-06-21
Patch backported to LTS
(v6.1.35 and v5.15.118)

2023-07-27
Exploit published

2023-06-28
CVE assigned

~ ~

2 Week patch gap

The Vulnerability - CVE-2023-3390

- Netfilter nftables subsystem
- Brand-new linux packet classification framework

- Covers {ip,ip6,arp,eb}tables

- Introduced in Linux v3.13
- Became attack vector with several vulnerabilities

- Famous and core functionality
- High code complexity

The Vulnerability - CVE-2023-3390

- Core nftables structs

nft_chain

nft_chain

nft_chain

nft_set nft_set

nft_set

nft_rule

nft_table

nft_rule

…

…

(named set)

(anonymous set)

…

The Vulnerability - CVE-2023-3390

- Core nftables operations
- Command send through Netlink socket
- To create / delete / lookup
- For table / chain / rule / set / set_elem / obj

The Vulnerability - CVE-2023-3390

- Operations handled in batch (transaction)

sendmsg syscall

batch
start

batch
end

Commit

Abort

nft_trans nft_trans nft_trans

NFT_MSG_NEWTABLE
 - protocol : INET
 - table name : “filter”

NFT_MSG_NEWCHAIN
 - protocol : INET
 - table name : “filter”
 - chain name : “chain1”

NFT_MSG_NEWRULE
 - protocol : INET
 - table name : “filter”
 - chain name : “chain1”
 - expr : lookup expression
 …

The Vulnerability - CVE-2023-3390

- CVE-2023-3390 : Mishandled error path during NFT_MSG_NEWRULE

The Vulnerability - CVE-2023-3390

The Vulnerability - CVE-2023-3390

Normal path
- Deactivate the set

The Vulnerability - CVE-2023-3390

Vuln path
- Unbind the set

The Vulnerability - CVE-2023-3390

Set destroyed and freed
due to unbinding

The Vulnerability - CVE-2023-3390

Freed set still accessible
due to improper deactivation

The Vulnerability - CVE-2023-3390

- UAF flow exist (assume table and chain is already initialized)

sendmsg syscall

batch
start

batch
end

Commit

Abort

nft_trans nft_trans nft_trans

NFT_MSG_NEWRULE
 - Add rule with set

NFT_MSG_NEWSET
 - Allocate set object

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error condition

The Vulnerability - CVE-2023-3390

- nft_set is allocated and initialized

sendmsg syscall

batch
start

batch
end

Commit

Abort

nft_trans nft_trans nft_trans

NFT_MSG_NEWRULE
 - Add rule with set

NFT_MSG_NEWSET
 - Allocate set object

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error condition

The Vulnerability - CVE-2023-3390

- nft_set is freed during faulty NFT_MSG_NEWRULE’s cleanup routine
- Due to invalid cleanup flag, the victim set is not properly deactivated

sendmsg syscall

batch
start

batch
end

Commit

Abort

nft_trans nft_trans nft_trans

NFT_MSG_NEWRULE
 - Add rule with set

NFT_MSG_NEWSET
 - Allocate set object

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error condition

The Vulnerability - CVE-2023-3390

- Another NFT_MSG_NEWRULE try to access into nft_set
- Which is already freed, but still accessible by improper deactivation

sendmsg syscall

batch
start

batch
end

Commit

Abort

nft_trans nft_trans nft_trans

NFT_MSG_NEWRULE
 - Add rule with set

NFT_MSG_NEWSET
 - Allocate set object

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error condition

The Vulnerability - CVE-2023-3390

- Freed set object only accessible in same transaction
- Possible exploit approaches

- Race the two transaction and reclaim the set with other transaction’s set
- Race the other thread to reclaim the set with other objects
- Reclaim with the other set in same transaction and exploiting nftables objects

The Vulnerability - CVE-2023-3390

- Freed set object only accessible in same transaction
- Possible exploit approaches

- Race the two transaction and reclaim the set with other transaction’s set
- Race the other thread to reclaim the set with other objects
- Reclaim with the other set in same transaction and exploiting nftables objects

- Race was quite unreliable (or impossible?)
- Need to analysis nftables internals deeply
- Above all, we don’t want to do those :(

- Or…?

The Vulnerability - CVE-2023-3390

- Achieve double free
- SLUB allocator has naive double free detection

sendmsg syscall

batch
start

batch
end

nft_trans nft_trans nft_trans

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error
condition

NFT_MSG_NEWSET
 - Allocate set object

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error
condition

nft_trans

NFT_MSG_NEWSET
 - Allocate set object

nft_trans

NFT_MSG_NEWRULE
 - Add rule with set

The Vulnerability - CVE-2023-3390

sendmsg syscall

batch
start

batch
end

nft_trans nft_trans nft_trans

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error
condition

NFT_MSG_NEWSET
 - Allocate set object

NFT_MSG_NEWRULE
 - Add rule with set
 - Trigger error
condition

nft_trans

NFT_MSG_NEWSET
 - Allocate set object

nft_trans

NFT_MSG_NEWRULE
 - Add rule with set

1.set_A
allocated

2.set_B
allocated

3.set_A
freed

4.set_B
freed

5.set_A
freed

Transaction aborted

- Achieve double free
- SLUB allocator has naive double free detection

The Vulnerability - CVE-2023-3390

- Double Free on (512/1k)-sized slab cache
- Size of nft_set struct can vary

cpu #0

A B A

…

Agenda

- About us
- Introduction to Google kernelCTF
- The Vulnerability: CVE-2023-3390
- The Exploit:

- LTS 6.1.31 instance
- COS 105 instance
- Mitigation 6.1 instance

- Demystifying kernel exploit mitigations
- Conclusion & Takeaways

- msg_msg & msg_msgseg struct

The Exploit: LTS 6.1.31 instance

struct msg_msg

user-controlled
data

next
m_type

prev
m_ts

next security

user-controlled
data

next
m_type

prev
m_ts

NULL security

user-controlled
data

next
m_type

prev
m_ts

next security

user-controlled
data

NULL

user-controlled
data

next

user-controlled
data

NULL

struct msg_msgseg

- Allocated as GFP_KERNEL_ACCOUNT
via msgsnd()

The Exploit: LTS 6.1.31 instance

- Leverage double free to msg_msg overlap

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

A

B

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

…

msgqids1[0]

msgqids1[1]

msgqids1[2]

msgqids2[x]

msgqids2[y]

…

kmalloc-cg-1k kmalloc-cg-512

The Exploit: LTS 6.1.31 instance

- Free one and reclaim with msg_msgseg struct
- Corrupt msg_msg’s header except 8 bytes
- Overwrite m_ts fields

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

…

NULL
m_type

prev
m_ts

next security

msgqids1[0]

msgqid3

msgqids2[x]

msgqids2[y]

next
m_type

prev
m_ts

next security

kmalloc-cg-4k

kmalloc-cg-1k kmalloc-cg-512

The Exploit: LTS 6.1.31 instance

- Overread by msgrcv() with MSG_COPY flag
- Leak the m_list.prev field of adjacent msg_msg
- kmalloc-cg-1k leak

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

…

NULL
m_type

prev
m_ts

next security

msgqids1[0]

msgqid3

msgqids2[x]

msgqids2[y]

next
m_type

prev
m_ts

next security

kmalloc-cg-4k

kmalloc-cg-1k kmalloc-cg-512

The Exploit: LTS 6.1.31 instance

- Free it and reclaim it with msg_msgseg again
- This time we set the next to kmalloc-cg-1k addr

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

next
m_type

prev
m_ts

next security

…

NULL
m_type

prev
m_ts

next security

…

msgqids1[0]

msgqid3

msgqids2[x]

msgqids2[y]

kmalloc-cg-1k kmalloc-cg-512

The Exploit: LTS 6.1.31 instance

- Place the pipe_buffer by pipe operation

next
m_type

prev
m_ts

next security

…

NULL
m_type

prev
m_ts

next security

…

msgqids1[0]

msgqid3

msgqids2[x]
page

offset

len

ops

flags

private

kmalloc-cg-1k kmalloc-cg-512

The Exploit: LTS 6.1.31 instance

- Overread by msgrcv() with MSG_COPY flag
- KASLR leak by anon_pipe_buf_ops

next
m_type

prev
m_ts

next security

…

NULL
m_type

prev
m_ts

next security

…

msgqids1[0]

msgqid3

msgqids2[x]
page

offset

len

ops

flags

private

kmalloc-cg-1k kmalloc-cg-512

- Free the unaligned chunk through next fields

The Exploit: LTS 6.1.31 instance

next
m_type

prev
m_ts

next security

…

page

offset

len

ops

flags

private

msgqids2[z]

kmalloc-cg-1k

msgqids2[x]

Freed

- Reclaim it with msg_msg
- a.k.a unaligned msg_msg techniques
- Can achieve full OOB write bypassing

CONFIG_USERCOPY_HARDENED

The Exploit: LTS 6.1.31 instance

next
m_type

prev
m_ts

next security

…

page

offset

len

ops

flags

private

msgqids2[z]

kmalloc-cg-1k

next
m_type

prev
m_ts

next security

msgqids2[x]

copy_from_user
occurs within a
boundary

page

offset

len

ops

flags

private

- Write the fake vtable and ROP payload
- Close the pipefds to trigger PC control

- Kernel stack is pivoted and ROP goes on

The Exploit: LTS 6.1.31 instance

next
m_type

prev
m_ts

next security

…

msgqids2[z]

kmalloc-cg-1k

next
m_type

prev
m_ts

next security

fake_ops
Pivot gadget

ROP Payload

msgqids2[x]

The Exploit: LTS 6.1.31 instance

- Kernel ROP payload
- commit_creds(prepare_kernel_creds(&init_task))

- Alloc new kernel-privileged cred and install it
into current process

- switch_task_namespace(find_task_by_vpid(1),
&init_nsproxy)

- Make the root process of container’s nsproxy
into init_nsproxy

- swapgs_restore_regs_and_return_to_usermode
- End the ROP and return to the user mode

The Exploit: LTS 6.1.31 instance

- Userland post-exploit
- Fork the process

- Spin the parent process
- To avoid touching corrupted cpu freelist

- On child process
- Change the CPU affinity

- To avoid touching corrupted cpu freelist
- Call setns(open("/proc/1/ns/{mnt, pid, net}", O_RDONLY), 0)

- To escape from container namespace
- Call execve(“/bin/bash”,...)

- Spawn root shell

The Exploit: COS 105 instance

- COS-105 instance Exploit
- Based on Linux v5.15 LTS
- Netfilter objects is not separated as cgroup caches

- nft objects are accounted after v5.18
- From commit 33758c891479ea1c736abfee64b5225925875557

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=33758c891479ea1c736abfee64b5225925875557

The Exploit: COS 105 instance

- user_key_payload struct

- Allocated as GFP_KERNEL via keyctl()
user-controlled data

rcu.head

datalen

rcu.func

struct user_key_payload

The Exploit: COS 105 instance

- Leverage double free to chunk overlap
- user_key_payload vs nft_set

kmalloc-1k

(overwritten) user-controlled data

datalen

struct user_key_payload struct nft_set

list.next

bindings.next

list.prev

bindings.prev

table net

ops

…

catchall_list.next catchall_list.prev

…

rcu.head rcu.func

The Exploit: COS 105 instance

- Read the user_key_payload
- datalen is corrupted by bindings.next
- Kmalloc-1k leak from catchall_list
- KASLR base leak from ops

kmalloc-1k

(overwritten) user-controlled data

datalen

struct user_key_payload struct nft_set

list.next

bindings.next

list.prev

bindings.prev

table net

ops

…

catchall_list.next catchall_list.prev

…

rcu.head rcu.func

- RCU-free and reclaim the user_key_payload
- Trigger set deletion with NFT_MSG_DELSET command for ROP

The Exploit: COS 105 instance

kmalloc-1k

rcu.head

datalen

rcu.func

struct user_key_payload struct nft_set

list.next

bindings.next

list.prev

bindings.prev

table net

ops

catchall_list.next catchall_list.prev

ops

ops->destroy
(pivot gadget)

ROP chain

Shellcode

…

…

…

…

…

The Exploit: COS 105 instance

- Kernel ROP payload
- set_memory_x(heap_addr, 1)

- Make current chunk address rwx

- Shellcode address
- Kernel shellcode

- Escalate privilege for target task_struct
(Functionally similar to ROP chain from LTS exploit)

The Exploit: COS 105 instance

- Userland post-exploit
- Child process is forked in very first stage

- Check the current euid
- Invoke same post_exploit function with LTS exploit

The Exploit: Mitigation 6.1 instance

- Mainly focused on UAF mitigation
- 3 types of mitigations introduced:

- CONFIG_SLAB_VIRTUAL
- Prevent page reclaim attack (a.k.a cross-cache attack)

- CONFIG_KMALLOC_SPLIT_VARSIZE
- Prevent reclaiming fixed-sized objects with variable-sized objects

- CONFIG_SLAB_FREELIST_HARDENED invariant
- Prevent freelist poisoning (Freelist hijacking, unaligned free…)

The Exploit: Mitigation 6.1 instance

?Mitigation?

Not a chance

(Exploit just worked lololololol)

Agenda

- About us
- Introduction to Google kernelCTF
- The Vulnerability: CVE-2023-3390
- The Exploit:

- LTS 6.1.31 instance
- COS 105 instance
- Mitigation 6.1 instance

- Demystifying kernel exploit mitigations
- Conclusion & Takeaways

Demystifying kernel exploit mitigations

- Why did the LTS exploit “just work” on mitigation instance?
- 3 types of mitigations introduced:

- CONFIG_SLAB_VIRTUAL
- CONFIG_KMALLOC_SPLIT_VARSIZE
- CONFIG_SLAB_FREELIST_HARDENED invariant

Demystifying kernel exploit mitigations:
CONFIG_SLAB_VIRTUAL

- “Ensures that slab virtual memory is never reused for a different slab”
- Once a virtual memory region is used for a specific type of slab,

it is never reused for a different type of slab

- Prevents cross-cache attack!
- Our exploit does not rely on cross-cache attack, irrelevant

Demystifying kernel exploit mitigations:
CONFIG_KMALLOC_SPLIT_VARSIZE

- “Splits each kmalloc slab into one for provably-fixed-size objects and one for
other objects”

-
-
-
-
-
- dyn-* variants added for variable-sized general-purpose slab caches

Demystifying kernel exploit mitigations:
CONFIG_KMALLOC_SPLIT_VARSIZE

- “Splits each kmalloc slab into one for provably-fixed-size objects and one for
other objects”

- All objects that we’ve used are variable-sized!
- A fundamental problem with all cache splitting approach not fine-grained enough

nft_set pipe_buffer

msg_msg msg_msgseg

Demystifying kernel exploit mitigations:
CONFIG_KMALLOC_SPLIT_VARSIZE

- “Splits each kmalloc slab into one for provably-fixed-size objects and one for
other objects”

- Even with a fixed-size vulnerable object, primitives can be pivoted to
variable-sized objects (a.k.a “Cache Transfer”)

- CVE-2023-0461 (exp41) submission pivots kmalloc-512 UAF -> dyn-kmalloc-1k UAF
by fqdir -> embedded rhashtable -> bucket_table pointer

- Plus, as a side effect this reduces cache noise

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- “Add lightweight freelist pointer validation in freelist_ptr_decode() when
CONFIG_SLAB_FREELIST_HARDENED is active”

- Computes a bitmask representing invariant bits that all chunk addresses satisfy
- Checks invariant on every freelist_ptr_decode()

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- “Add lightweight freelist pointer validation in freelist_ptr_decode() when
CONFIG_SLAB_FREELIST_HARDENED is active”

- Q: Exploit uses unaligned msg_msg free, but how did this work?
A: The unaligned chunk is freed and reclaimed immediately!

next
m_type

prev
m_ts

next security

…

page

offset

len

ops

flags

private

msgqids2[z]

next
m_type

prev
m_ts

next security

msgqids2[x]

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- “Add lightweight freelist pointer validation in freelist_ptr_decode() when
CONFIG_SLAB_FREELIST_HARDENED is active”

- Slab freelist is LIFO
- Last freed chunk address is saved in kmem_cache_cpu->freelist non-encoded
- Our unaligned address is never encoded/decoded unless more chunks are freed

Demystifying kernel exploit mitigations

- Our LTS exploit already bypasses all additional mitigations
- But we see more “mitigation problems”, even in LTS instance

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

- We expand exploit capability from UAF to DFB
- Two distinct free routines that lead to DFB, both calls list_del_rcu()

On cleanup routines of NFT_MSG_NEWRULE
- nf_tables_newrule
└ - nf_tables_rule_release
 └ - nft_rule_expr_deactivate
 └ - nf_tables_deactivate_set
 └ - nf_tables_unbind_set
 └ - list_del_rcu // [1]
 - nf_tables_rule_destroy
 └ - nf_tables_expr_destroy
 └ - nft_set_destroy // [2]

On transaction abort routine
- nf_tables_abort
└ - __nf_tables_abort
 └ - nft_rule_expr_deactivate
 └ - nf_tables_deactivate_set
 └ - nf_tables_unbind_set
 └ - list_del_rcu // [3]
 - nf_tables_abort_release
 └ - nf_tables_rule_destroy
 └ - nf_tables_expr_destroy
 └ - nft_set_destroy // [4]

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

- We expand exploit capability from UAF to DFB
- Two distinct free routines that lead to DFB, both calls list_del_rcu()

- What happens when list entry is deleted twice?

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

- We expand exploit capability from UAF to DFB
- Two distinct free routines that lead to DFB, both calls list_del_rcu()

- What happens when list entry is deleted twice?

- On second delete, prev == LIST_POISON2 and __list_del() is skipped
- This yields a harmless kernel warning, allowing our exploit to continue on and

trigger double free!

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

- We expand exploit capability from UAF to DFB
- Two distinct free routines that lead to DFB, both calls list_del_rcu()

- What happens when list entry is deleted twice?

- On second delete, prev == LIST_POISON2 and __list_del() is skipped
- This yields a harmless kernel warning, allowing our exploit to continue on and

trigger double free!

- Without CONFIG_DEBUG_LIST, list unlink would have triggered a #GP fault.

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

- CONFIG_DEBUG_LIST prevents arbitrary unlink primitives…
- ex) modprobe_path overwrite via unlink is now impossible

- …but it may also create stronger exploitation primitives!
- #GP faulting on poison value is an implicit security mechanism “mitigated away”

Demystifying kernel exploit mitigations:
CONFIG_DEBUG_LIST

- Similar problems with CONFIG_SLAB_FREELIST_HARDENED invariant check
added on mitigation instance

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- Freelist state after double free

cpu #0

A B A

encode(B) encode(A) encode(B) …

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- First chunk (A) allocated
- Data written on the chunk corrupts freelist

cpu #0

A

B A

???

encode(A) ??? decode(???)

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- Second chunk (B) allocated

cpu #0

A B

A

??? ???

??? decode(???)

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- Third chunk (A) allocated
- Freelist head pointing to invalid address

cpu #0

A B A

decode(???)

??? ??? ???

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- On LTS instance, further allocation in this slab results in #GP fault

cpu #0

A B A

decode(???)

??? ??? ???

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- On mitigation instance, corrupted pointer is automatically fixed to NULL

cpu #0

A B A

NULL

??? ??? ???

- This mitigates freelist poisoning, but now automatically “mitigates” broken
freelist state and fixes itself

- Double free or unaligned free may corrupt encoded freelist, forcing attacker to
exert precise control over allocation pattern

- With this “mitigation” attackers need not worry about corrupting freelist!

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- Good news for attackers:
- Exploiting: Stabilizes exploit, enables allocation patterns that would have been

impossible (or difficult) to achieve with corrupted freelist

- Failed exploit: Avoids crashing on failed exploit attempts due to unexpected
allocation patterns, allowing retry until success

- Post-exploit: Stabilizes post-exploit state as corrupted freelist will fix itself on
allocation

Demystifying kernel exploit mitigations:
CONFIG_SLAB_FREELIST_HARDENED invariant

- The problem: Kernel trying to recover and continue on from a broken state
- Implications of simply skipping some operations may be profound!

- CONFIG_BUG_ON_DATA_CORRUPTION may be used to panic the kernel in
such cases, with an availability trade-off

Demystifying kernel exploit mitigations:
CONFIG_BUG_ON_DATA_CORRUPTION

Demo

https://docs.google.com/file/d/1wjqQ_tW-AwxTKkLO_LCslqSGYlLCyE7E/preview

Agenda

- About us
- Introduction to Google kernelCTF
- The Vulnerability: CVE-2023-3390
- The Exploit:

- LTS 6.1.31 instance
- COS 105 instance
- Mitigation 6.1 instance

- Demystifying kernel exploit mitigations
- Conclusion & Takeaways

Conclusion & Takeaways

- Linux kernel bug triage is still difficult
- Exploitability? Patch gap?

- Applying seemingly harmless mitigations have their own implications
- Side-effects may be detrimental to security

- Google kernelCTF doing good for community
- Open-sourcing kernel exploits as public knowledge
- Making exploits harder, increasing the costs of attackers

Status Quo

- 0-day rain

Status Quo

- Mitigation instance updated

Status Quo

- More “CTF” VRP programs: kvmCTF, v8CTF

Thank You!

This work is the result of commissioned research project
supported by the affiliated institute of ETRI[2023-036]

References

- https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README
- https://google.github.io/security-research/kernelctf/rules
- https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-

3390_lts_cos_mitigation

https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README
https://google.github.io/security-research/kernelctf/rules
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation

