sTQR p(C

ﬂﬂﬂﬂﬂﬂ

How to backup and pwn
using Time Machine

Nguyen Hoang Thach (@hi_im_d4rkn3ss)
STAR Labs SG Pte. Ltd.

About me

* Nguyen Hoang Thach (@hi_im_d4rkn3ss)
* Security Researcher at STAR Labs SG Pte. Ltd.
* Focusing on Virtual Machine / Android / IOT bug hunting.

* Participated in Pwn20wn Tokyo 2020 and Pwn2wn Austin 2021 in Router, NAS and Mobile
phone category, and Pwn20wn Vancouver 2022 in the Virtual Machine category

Agenda

e S

File service in NAS devices
Bug in processing "appl file

Bug in processing file ‘s "xattr’

Summary

File service in NAS devices

Nas devices

* Network-attached storage (NAS) device is a data storage device that connects to and is accessed
through a network, instead of connecting directly to a computer.

* In recent year, ZDIl added some NAS devices to list target (WD, Synology NAS) in their Pwn20wn
contest

* Last year, | participated in Pwn20wn, | found 4 bugs and successful pwned 3 different NAS
devices: WD Home Cloud NAS (release version), WD Home Cloud NAS (beta version) and WD Pro
PR4100 NAS.

» Attack surface: File service

File service in NAS devices

Architecture

* WD Home Cloud (release version)
Arm 32bit little endian

* WD Home Cloud (beta version)
Arm 32bit little endian

* WD Pro PR4100
Arch64 little endian

File service in NAS devices

File Service

* Usually, NAS devices implemented at least one File Service to support file sharing, file printing,
file backup.

* | will focus on 2 popular file services: *netatalk afpd™ and *samba smbd*
* WD Home Cloud (release version) and WD Pro Pr4100 implement both *afpd™* and *smbd*
* WD Home Cloud (beta version) implement *smbd*

* \Version:
* Netatalk afpd : v3.1.12

* Samba smbd : v4.9.5

File service in NAS devices

Configuration

* Usually, in NAS devices, at least, there is one public share folder.
* Some features also are implemented, for example: *Time Machine Backup*

-> extend the attack surface

File service in NAS devices

afpd™ configuration

[Global]

uam list = uams_guest.so,uams_dhx2 passwd.so

save password = no

unix charset = UTF8

use sendfile = yes

zeroconf = no

guest account = nobody

vol dbpath = /data/wd/diskVolume@/backups/.systemfile/netatalk/CNID

[TimeMachineBackup]
path = /data/wd/diskVolume®/backups/timemachine
ea = auto

* ‘'uams_guest.so is declared in 'uam list’, it accepts guest authentication.

* *TimeMachineBackup® is a public share folder

File service in NAS devices

smbd configuration®

[global]
T . * : . [TimeMachineBackup]
‘ TlmeMaChlneBaCkup IS a pUbIIC path = /data/wd/diskVolume®/backups/timemachine
share folder browseable = yes
public = yes
N\ AN . .l bl =
* ‘guest ok = yes' is declared, it allows e e
guest authentication follow symlinks = yes
map archive = no
N\ . AN . . t k —
* The ‘vfs objects’ list contains 3 modules: S
Catia’ *frUit*, *streams_xattr* vfs objects = catia fruit streams_xattr

durable handles = yes
kernel oplocks = no

* *vfs_fruit*: Enhanced OS X and o e e
Netatalk interoperability posix locking = no

inherit acls = yes

strict sync = yes

fruit:time machine = yes
fruit:time machine max size = oM

File service in NAS devices
Mitigation

é checksec ./WDHome/afpd
[*] '/tmp/wWDHome/afpd"

Arch: arm—32-little

RELRO: Partial RELRO
* afpd (WD Home) i

NX: NX enabled

PIE: PIE enabled

RUNPATH:

$ checksec ./WDPro/afpd
[#] '/tmp/WDPro/afpd’

Arch: amd64—64-little
* afpd (WD Pro) RELRO: Partial RELRO

Stack:

NX: NX enabled

PIE: PIE enabled

$ checksec ./WDHomeBeta/smbd
[#] '/tmp/WDHomeBeta/smbd"

° Arch: aarche4—-64-little
smbd (WD Home Beta) RELRO: Full RELRO
Stack: Canary found
NX: NX enabled
PIE: PIE enabled
RUNPATH:

FORTIFY: Enabled

Bug in processing appl file

Target

* 2 bugs in *afpd*

* Bugs were used to exploit the WD Home Cloud (release version)

Bug in processing appl file

Background

* *appl* file store database information when user read/write to files.
* In *afpd*, it has extension “.appl” and it is stored in "dbpath” which is declared in afpd.conf

* In *afpd*, there are 2 functions to create/delete *appl* file: "afp_addappl” and “afp_rmvappl.
Both functions require authentication to access. When call these functions, user will submit a

‘creator value, then based on this value, a
appl file is processed.
header absolute path
12

* *appl* file content: contains multiple chunks,
chunk format:

* "appltag': Ox4 bytes, user supplied

* ‘'mlen’: 0x2 bytes, size of absolute path

* "absolute path': maximum 0x1000 bytes, it is
absolute path of requested file by user.

Bug in processing app

" file

Background

"afp_addappl” function flowchart:

read

‘creator’, "appltag’

getvolbyvid()
dirlookup()
open dir by “vid" and “did’

cname()
construct path to “filename’

applopen()

open/create appl file by “creator’

dtfile()
open/create temp appl file

makemacpath()
construct absolute path to “filename’

write new appl entry
to temp appl file

copyapplfile()
append origin 's appl entries to

temp appl file

rename temp appl file to
origin appl file

13

file

Stack Out-Of-Bounds Write # root cause

86 static int copyapplfile(int sfd, int dfd, char *mpath, u_short mplen)
87 {

88 int CC:

89 char *p;

90 uintlé_t 1len;
92 char buf[MAXPATHLEN];

93

94 while ((cc = read(sfd, buf, sizeof(appltag) + sizeof(u_short))) >0) {
95 p = buf + sizeof(appltag);

96 memcpy(&len, p, sizeof(len));

97 len = ntohs(len);

99 if ((cc = read(sa.sdt_fd, p, len)) < len) {
100 break;

101 }

102 if (pathcmp(mpath, mplen, p, len) !=9) {

104 if (wrlte(dfd, buf, p - buf) !=p - buf) {
165 cc = -1;

106 break;

107 }

108 }

109 }

return(cc);

-111} _

Bug in processing appl file

Stack Out-Of-Bounds Write # root cause

* As mentioned above, maximum size of a chunk is 0x1000 + 6 = 0x1006
* "buf is a stack-based buffer, size 0x1000

* Calling ‘read” function at line 99 cause Stack Out-Of-Bounds Write

-00001026 buf DCB 4096 dup(?)
-00000026 DCB ? ; undefined
-00000025 DCB ? ; undefined
-00000024 DCB ? ; undefined
-90000023 DCB ? ; undefined
-00000022 len DCW ?

* With 6 bytes Out-Of-Bounds Write -> overwrite ‘len’

* Calling “write” function at line 104 cause writing a truncated chunk to temporary *appl* file

15

Bug in processing appl file
Stack Out-Of-Bounds Write # root cause

* The next time function "copyapplfile” parses corrupted *appl* file, the calling ‘read" at line 99
might cause Stack Out-Of-Bounds Write, and we could overwrite return address in stack -> RCE

* Here is a sample payload cause corrupting *appl* file:

corrupt file appltag mlen SLiEEL SRRl appltag mlen jlirname filename
path

malformed header

16

Bug in processing appl file
Stack Out-Of-Bounds Write # exploitation

This bug is used to exploit WD Home Cloud (release version)

* Architecture: arm 32 bit
* Mitigation: ASLR + PIE
Notes

* The maximum size of filename in linux is 256, we need 0x1000 bytes -> we need to create
multiple nested folder.

* Since absolute path cannot contains null char -> cannot store pointer address in it

* Red filename will overwrite the ‘len” value in stack, | set it to Oxf60, when translate to ascii, it is
“\x60\0xf", still valid to use in filename

* sizeof "appltag == 4 bytes and controllable by user -> we will place malform ‘'mlen” and
malform return address in it.

17

Bug in processing appl file
Stack Out-Of-Bounds Write # exploitation

Step 1. Bypass ASLR

* *afpd™ is multi-process server, using fork™ to create child process to handle a new connection
-> we could partial overwrite ret address to bruteforce PIE base address.

* Partial overwrite origin ret address not work, because Sr11 register is overwritten in stack and
parent function use Sr11 -> always crash

.text :0000D540 BL copyapplfile
* | used timebase bruteforce method instead - text:000eD544 l STR RO, [R11,#var_24]
* 2 address is different, but dlfferencg is not text : oBOOECCE novi 0. %1 - seconds
too large (< 0x2000) -> bruteforce still work text:0@BOECCC BL sleep

* 15t byte is always in range 0xa0 - Oxaf
-> maximum 16 + 256 + 16 = 288 attempts to successful bruteforce PIE base address

18

Bug in processing appl file
Stack Out-Of-Bounds Write # exploitation

Step 2. Execute command as root

“afprun_bg’ function run

R1, [SP,#0x64] command with root privilege
BL afprun_bg

. .text:000268A4 LDR
* Use the following gadget: .text:ecezssas

* Since the file content is copied to stack -> we could put address of command in file content

* The final payload:

0x6 0xf80 0x80

normal file appltag dirname filename filename pad_chunk_1 appltag absolute path appltag M absolute path
corrupt file appltag M truncatziterl]bsolute pad_chunk_2 D filename pad_chunk_1 absolute path appltag absolute path

appltag

malformed len

0xf60 0xa0 0x4

0xf84 Oxa4 0x64

s
* Blue’s "appltag” contains malformed length

* Green’s ‘appltag contains address of above gadget
* Purple’s "appltag” contains address of command

19

Bug in processing appl file

Race condition # root cause

201 int afp_addappl(AFPObj *obj, char *ibuf, size t ibuflen U _, char *rbuf U , size t *rbuflen)

202 {

251 if ((tfd = open(tempfile, O_RDWR|O_CREAT, 0666)) < @) {
252 return(AFPERR_PARAM);

253

254 mpath = obj->newtmp;

255 mp = makemacpath(vol, mpath, AFPOBJ_TMPSIZ, curdir, path->m_name);
256 if (!mp) {

257 close(tfd);

258 return AFPERR_PARAM;

259

260 mplen = mpath + AFPOBJ_TMPSIZ - mp;

261

262 /* write the new appl entry at start of temporary file */
263 p = mp - sizeof(u_short);

264 mplen = htons(mplen);

265 memcpy(p, &mplen, sizeof(mplen));

266 mplen = ntohs(mplen);

267 p -= sizeof(appltag);

268 memcpy(p, appltag, sizeof(appltag));

269 cc = mpath + AFPOBJ TMPSIZ - p;

270 if (write(tfd, p, cc) !=cc) {

271 close(tfd);

272 unlink(tempfile);

PYE! return(AFPERR_PARAM);

274

288 }

Bug in processing appl file

Race condition # root cause

* *afpd™ is a multiple processes service — each command is processed in a separated process
* At line 251 and 270, perform file operator without lock.

* Sending multiple add appl file commands with same "creator’ value -> multiples process
processed a same file -> race condition

* Race condition -> chunks data might overlap each other -> corrupt the temporary appl file

21

Bug in processing appl file

Race condition # root cause

* As mentioned before, when function "copyapplfile” parses corrupted *appl* file, the calling
‘read” at line 99 might cause Stack Out-Of-Bounds Write, and we could overwrite return address
in stack -> RCE

* Here is a sample payload cause corrupting *appl* file:

%,_J

malformed header

Bug in processing appl file

Race condition # exploitation

This bug is used to exploit WD Home Cloud (release version)

Architecture: arm 32 bit

Mitigation: ASLR + PIE

Bug in processing appl file

Race condition # exploitation

Step 1. Bypass ASLR
* Can reuse timebased bruteforce ?
* Race condition + bruteforce seems not reliable

* Need a information disclosure vulnerability

p

Bug in processing appl file

Race condition # exploitation

Step 2. Execute command as root
. .text:000268A4 LDR R1, [SP,#0x64]
* Use the following gadget: .text:ecezssas

BL afprun_bg

* Since the file content is copied to stack -> we could put address of command in file content

* The race condition also occurred in "afp_rmappl -> could race between "afp_addappl and
“afp_rmappl processes

25

Bug in processing appl

Race condition # exploitation

Step 2. Execute command as root

| 0xb0 | 0x5e | | 0x62 | 0x8 |
[I | [| |
origin appl appltag mlen short_dirname filename appltag mlen |absolute path appltag mlen |absolute path
| 0xf01 | Oxf | | 0xb0 | 0x5e | | 0x62 | 0x8 |
| |] | |] | |]
afp_addappl blue appltag_1 mlen_1 long_dirname_1 long_dirname._... filename appltag mlen short_dirname filename appltag mlen | absolute path appltag mlen |absolute path
afp_rmvappl yellow appltag mlen |absolute path appltag mlen | absolute path
| | |
Fooxe2 | 0x8 !
| 0xf01 | Oxf | | 0xb0 | 0x5e | | 0x62 | 0x8 |
[[| [[| [I]
corrupt file appltag mlen |absolute path appltag mlen | absolute path long_dirname_1 long_dirname_... filename appltag mlen short_dirname filename appltag mlen |absolute path appltag mlen | absolute path

| | |
| T 0B | e
malformed len
| | | |
' 0x1028 ' 0x64 ' 0x8 '

Bug in processing appl file

Race condition # exploitation

Step 2. Execute command as root
* Malformed length is lied on the end of Blue’s directory name

* | choose "Malformed length™ is 0x1108, translated to ascii name: "\x08\x11" - still valid to use as
directory name

* Green’s "appltag contains address of gadget

* Purple’s "appltag contains address of command

27

Bug in processing appl file

Bonus

Netatalk weak hash function leads to information disclosure
* Bugisin “uams_dhx2 passwd.so”

* Using weak hash function to hash a pointer ??

152 static int dhx2_setup(void *obj, char *ibuf U , size t ibuflen U,

153 char *rbuf, size t *rbuflen)
154 {

209

210 /* Session ID first */

211 ID = dhxhash(obj);

212 uint16 = htons(ID);

213 memcpy (rbuf, &uintl6, sizeof(uintl6 t));

214 rbuf += 2;

215 *rbuflen += 2;

47 #define dhxhash(a) ((((unsigned long) (a) > 8) ~ \
48 (unsigned long) (2)) & oxffff)

* *Session ID* value here will be sent back to client later

Bug in processing appl file

Bonus

Netatalk weak hash function leads to information disclosure
* "obj is a global pointer -> located in the .text section
* The NAS running 32bit OS -> 15t byte and 4t byte are known
* We could calculate the 2"d byte and 3 byte from *Session ID*
-> bypass ASLR

29

Bug in processing file ‘s xattr
Target

* 2 bugs: one in *afpd™ and one in *smbd*

* Bugs were used to exploit the WD Pro PR4100 and WD Home Cloud (beta version)

Bug in processing file ‘s xattr

Background

* Extended attributes (xattr) are *name:value™* pairs associated permanently with files and
directories

* Both *afpd* and *smbd* have command to allow user to set xattr for a file/directory (require
authentication).

* Some special xattr will be parsed when process files

31

Bug in processing file ‘s xattr
Background

In case of *afpd™:

* "afp_setextattr command is responsible to set the *value* of the extended attribute identified
by *name®* and associated with the given path in the filesystem.

* [t is done by invoking “setxattr’/ Isetxattr’/ fsetxattr function.

* No checking in whole process -> user can set arbitrary *name*:*value* xattr

32

Bug in processing file ‘s xattr

Background

* "ad_open function is responsible to open file.
* Some special xattrs are parsed here, one of them is AD_EA_META: "org.netatalk.Metadata"

* As mentioned before, no checking in the "afp_setextattr function -> user can set the malform
"org.netatalk.Metadata" xattr.

33

Bug in processing file ‘s xattr
Background

‘parse_entries function call stack

ad_open_hf

ad_open_hf_ea

ad->ad_ops->ad_header_read
ad_header_read_ea

parse_entries

34

Bug in processing file ‘s xattr

Afpd Parsing xattr Out-Of-Bounds Access # root cause

401 static int parse_entries(struct adouble *ad, char *buf, uintl6 _t nentries)

402 {

403 uint32 t eid, len, off;

404 int ret = 9;

405

406 /* now, read in the entry bits *

407 for (; nentries > ©; nentries--) {

408 memcpy(&eid, buf, sizeof(eid));

409 eid = get_eid(ntohl(eid));

410 buf += sizeof(eid);

411 memcpy (&off, buf, sizeof(off));

412 off = ntohl(off);

413 buf += sizeof(off);

414 memcpy(&len, buf, sizeof(len));

415 len = ntohl(len);

416 buf += sizeof(len);

417

418 ad->ad_eid[eid].ade_off = off;

419 ad->ad_eid[eid].ade_len = len;

420

421 if (leid

422 || eid > ADEID MAX

423 || off >= sizeof(ad->ad_data)

424 || ((eid !'= ADEID RFORK) && (off + len > sizeof(ad->ad_data))))
425 {

426 ret = -1;

427 LOG(log warning, logtype ad, “"parse_entries: bogus eid: %u, off: %u, len: %u",
428 (uint)eid, (uint)off, (uint)len);
429 }

430 }

431

432 return ret;
433 }

Bug in processing file ‘s xattr
Afpd Parsing xattr Out-Of-Bounds Access # root cause

* Each entry in ‘struct adouble *ad" object has format:

Ox4 Ox4

* ‘eid’: ID of entry
e ‘off is offset value from "ad->ad_data" buffer
 ‘len is size of value.

* There are some checks to prevent accessing out-of-bounds of "ad->ad_eid" array
and ‘ad->ad_data buffer

* But no check if the "off and ‘len" are valid for a specific "eid” -> leads to multiple Out-Of-Bounds
access when use ‘struct adouble *ad" later.

36

Bug in processing file ‘s xattr
Afpd Parsing xattr Out-Of-Bounds Read # root cause

80 void *get finderinfo(const struct vol *vol, const char *upath, struct adouble *adp, void *data, int islink)

81 {
82 struct extmap *em;
83 void *ad_finder = NULL;
84 int chk_ext = 0;
85
87 ad_finder = ad_entry(adp, ADEID FINDERI);
88
89 if (ad_finder) {
90 memcpy(data, ad_finder, ADEDLEN_FINDERI); // <-- ADEDLEN_FINDERI = 32
91 /* default type ? */
92 if (default_type(ad_finder))
93 chk_ext = 1;
94 }
95 else {
IE3 Soo &Y
122 }

Bug in processing file ‘s xattr

Afpd Parsing xattr Out-Of-Bounds Read # root cause

* Line 87, get "ad_finder pointer from struct adouble *adp'. As mentioned above, "ad_finder’
could point to the last byte of "adp->ad_data’ buffer.

* Line 90, calling ‘'memcpy with the fixed size - 32, lack of the check if
32 > ‘adp->ad_eid[ADEID_FINDERI].ade_len" -> out-of-bounds read issue.

* The "data” will be sent back to user later -> information disclosure

* "adp->ad_data is a stack-based buffer -> leak pie base address.

38

Bug in processing file ‘s xattr
Afpd Parsing xattr Out-Of-Bounds Write # root cause

833 static int ad_addcomment(const AFPObj *obj, struct vol *vol, struct path *path, char *ibuf)

834 {

835 struct ofork *of;

836 char *name, *upath;
837 int isadir;

838 int clen;

839 struct adouble ad, *adp

8409
841 clen = (u char)*ibuf++;

842 clen = min(clen, 199);
[... *)
862 if (ad_getentryoff(adp, ADEID COMMENT)) {
863 if ((ad_get MD flags(adp) & O_CREAT)) {
864 if (*path->m_name == '\’) {
865 name = (char *)curdir->d_m_name->data;
866 } else {
867 name = path->m_name;
868 }
869 ad_setname(adp, name);
870
872 memcpy(ad_entry(adp, ADEID COMMENT), ibuf, clen);
873 ad_flush(adp);
874 }
875 ad_close(adp, ADFLAGS_HF);

876 return(AFP_OK);

Bug in processing file ‘s xattr
Afpd Parsing xattr Out-Of-Bounds Write # root cause

* Line 872, get pointer from ‘struct adouble *adp'. As mentioned above, this pointer could point
to the last byte of "adp->ad_data buffer.

* Line 872, calling ' memcpy" with the controllable len “clen’, lack of the check if
‘clen” > "adp->ad_eid[ADEID_FINDERI].ade_len" -> out-of-bounds write issue.

* "adp->ad_data is a stack-based buffer -> could overwrite the return address in stack.

40

Bug in processing file ‘s xattr

Afpd Parsing xattr Out-Of-Bounds Access # exploitation

This bug is used to exploit WD Pro Pr4100
Architecture: aarch64

Mitigation: ASLR + PIE

41

Bug in processing file ‘s xattr

Afpd Parsing xattr Out-Of-Bounds Access # exploitation

Step 1: Bypass ASLR
* Using Out-Of-Bounds Read to leak PIE base

Step 2: Execute command as root

* Using Out-Of-Bounds Write to overwrite the return address in stack with the following rop
chain:

0x000000000003c429 : pop rsi ; pop rl5 ; ret

Follow by address of a global buffer stored command + address of "afprun_bg" function

-> execute command as root

42

Bug in processing file ‘s xattr

Smbd Parsing xattr Out-Of-Bounds Access # root cause

* *smbd* also provide to user a command to set xattr of a file/directory.
* It is done by ‘set_ea function.

* The *name* of our attribute must not be in the private *Samba* attribute name list
(‘user.SAMBA_PAI", "user.DOSATTRIB’, ‘user.SAMBA_STREAMS’, ‘security.NTACL")

* When *fruit* module process file/directory, it also parse some special xattr values, such as
AFPINFO_EA_NETATALK: "org.netatalk.Metadata"

* 'AFPINFO_EA_NETATALK" is not in the private attribute name list -> user can submit a malform
xattr value

43

Bug in processing file ‘s xattr

Smbd Parsing xattr Out-Of-Bounds Access # root cause

870 static bool ad_unpack(struct adouble *ad, const size t nentries,

871 size t filesize)
872 {
B oo B
907 for (1 = ©; i1 < adentries; i++) {
208 eid = RIVAL(ad->ad_data, AD_HEADER LEN + (i * AD_ENTRY_LEN));
9209 eid = get eid(eid);
910 off = RIVAL(ad->ad_data, AD_HEADER_LEN + (i * AD_ENTRY_LEN) + 4);
911 len = RIVAL(ad->ad_data, AD_HEADER_LEN + (i * AD_ENTRY_LEN) + 8);
/* some checks to prevent accessing out-of-bounds of “ad->ad eid” and "ad->ad_data” buffer */
988 ad->ad_eid[eid].ade_off = off;
989 ad->ad_eid[eid].ade_len = len;
990 }
991
992 ok = ad_unpack xattrs(ad);
993 if (lok) {
994 return false;
995 }
996
997 return true;
998 }

It is very similar to the *afpd™* ‘s "parse_entries” function

Bug in processing file ‘s xattr
Smbd Parsing xattr Out-Of-Bounds Read # root cause

4264 static ssize t fruit_pread_meta_adouble(vfs_handle_struct *handle,

4265 files_struct *fsp, void *data,
4266 size_t n, off_t offset)

4267 {

4268 AfpInfo *ai = NULL;

4269 struct adouble *ad = NULL;

4270 char afpinfo_buf[AFP_INFO_SIZE];

4271 char *p = NULL;

4272 ssize t nread;

4279 ad = ad_fget(talloc_tos(), handle, fsp, ADOUBLE_META);
4280 if (ad == NULL) {

4281 nread = -1;

4282 goto fail;

4283 }

4284

4285 p = ad_get_entry(ad, ADEID_FINDERI);

4286 if (p == NULL) {

4287 DBG_ERR("No ADEID_FINDERI for [%s]\n", fsp_str_dbg(fsp));
4288 nread = -1;

4289 goto fail;

4290 }

4291

4292 memcpy(&ai->afpi_FinderInfo[©], p, ADEDLEN_FINDERI); // <-- ADEDLEN_FINDERI = 32
4293

4294 nread = afpinfo_pack(ai, afpinfo_buf);

4205 if (nread != AFP_INFO SIZE) {

4296 nread = -1;

4297 goto fail;

4208 }

4299

4300 memcpy(data, afpinfo_buf, n);

4301 nread = n;

4302

4303 fail:

4304 TALLOC_FREE(ai);

4305 return nread;
4306 }

Bug in processing file ‘s xattr
Smbd Parsing xattr Out-Of-Bounds Read # root cause

* Line 4285, get 'p pointer from ‘struct adouble *ad'. As mentioned above, 'p" could point to the
last byte of "ad->ad_data buffer.

* Line 4293, calling ‘'memcpy with the fixed size - 32, lack of the check if
32 > "ad->ad_eid[ADEID_FINDERI].ade_len" -> out-of-bounds read issue.

* The "data” will be sent back to user later -> information disclosure

» 'ad->ad_data is a heap-based buffer.

46

Bug in processing file ‘s xattr
Smbd Parsing xattr Out-Of-Bounds Write # root cause

4642 static ssize t fruit_pwrite_meta_netatalk(vfs_handle_struct *handle,

4643 files_struct *fsp, const void *data,
4644 size t n, off_t offset)

4645 {

4646 struct adouble *ad = NULL;

4647 AfpInfo *ai = NULL;

4648 char *p = NULL;

4649 int ret;

4650 bool ok;

4657 ad = ad_fget(talloc tos(), handle, fsp, ADOUBLE META);
4658 if (ad == NULL) {

4659 ad = ad_init(talloc_tos(), handle, ADOUBLE_META);
4660 if (ad == NULL) {

4661 return -1;

4662 }

4663 }

4664 p = ad_get_entry(ad, ADEID FINDERI);

4665 if (p == NULL) {

4666 DBG_ERR("No ADEID_FINDERI for [%s]\n", fsp_str_dbg(fsp));
4667 TALLOC_FREE(ad);

4668 return -1;

4669 }

4670

4671 memcpy(p, &ai->afpi_FinderInfo[©], ADEDLEN_FINDERI); // <-- ADEDLEN_FINDERI = 32
4672

4704 }

Bug in processing file ‘s xattr

Smbd Parsing xattr Out-Of-Bounds Write # root cause

* Line 4664, get 'p pointer from ‘struct adouble *ad". 'p" pointer could point to the last byte of
‘ad->ad_data buffer.

* Line 4671, calling 'memcpy with the fixed size - 32, lack of the check if
32 > ‘ad->ad_eid[ADEID_FINDERI].ade_len" -> out-of-bounds write issue.

* 'ad->ad_data is a heap-based buffer.

48

Bug in processing file ‘s xattr

Smbd Parsing xattr Out-Of-Bounds Access # exploitation

This bug is used to exploit WD Home Cloud (beta version)
* Architecture: arm 32 bit
* Mitigation: ASLR + PIE

49

Bug in processing file ‘s xattr
Smbd Parsing xattr Out-Of-Bounds Access # exploitation

Backgound

* *Smbd* implements both glibc ‘s ‘ptmalloc’ and its own “talloc’ memory allocation.

* Chunk format:

Talloc chunk
* flags: chunk canary + some flags

prev * next, prev: point to the next/prev chunk
» destructor: function pointer, will be

invoked when chunk is free

Ptmalloc chunk:
_ » fd, bk: point to the next/prev chunk

50

Bug in processing file ‘s xattr

Smbd Parsing xattr Out-Of-Bounds Access # exploitation

Step 1. Bypass ASLR
* Require spray heap to create both ‘ptmalloc’ chunk and “talloc’ chunk

* Able to read up to 24 bytes past end of 'ad->ad_data” chunk
* Leak 'talloc.flags™ to bypass chunk canary check

* Leak ‘talloc.next’, ‘talloc.prev’ to know heap address
* Leak ‘ptmalloc.fd’, ‘ptmalloc.bk™ to know libc address (because it might point to main_arena)

51

Bug in processing file ‘s xattr
Smbd Parsing xattr Out-Of-Bounds Access # exploitation

Step 2. Control the Spc
* We know chunk canary -> can forge a valid ‘talloc’ chunk in heap address

* We know heap address -> overwrite next pointer in a in used talloc’ chunk by our forge chunk
-> when this in used 'talloc’ chunk is freed -> our forge chunk is also freed -> invoke "destructor’
function

* We know libc address -> calculate other shared lib address -> set proper address in "destructor
function pointer -> execute command as root

52

Summary

Conclusion

* Check configuration of file service running on NAS/router devices, it might contains addition
feature -> extend attack surface

* Same feature might contain same bug pattern

TODO

* Does the fuzzer work ?

* Samba: Check remain modules which declared in "vfs objects’ list

53

‘‘‘‘‘

Thanks for listening

p{_

Nguyen Hoang Thach (@hi_im_d4rkn3ss)
STAR Labs SG Pte. Ltd.

