
How to backup and pwn
using Time Machine
Nguyen Hoang Thach (@hi_im_d4rkn3ss)

STAR Labs SG Pte. Ltd.

1

About me
• Nguyen Hoang Thach (@hi_im_d4rkn3ss)

• Security Researcher at STAR Labs SG Pte. Ltd.

• Focusing on Virtual Machine / Android / IOT bug hunting.

• Participated in Pwn2Own Tokyo 2020 and Pwn2wn Austin 2021 in Router, NAS and Mobile
phone category, and Pwn2Own Vancouver 2022 in the Virtual Machine category

2

Agenda
1. File service in NAS devices

2. Bug in processing `appl` file

3. Bug in processing file ‘s `xattr`

4. Summary

3

File service in NAS devices
Nas devices

• Network-attached storage (NAS) device is a data storage device that connects to and is accessed
through a network, instead of connecting directly to a computer.

• In recent year, ZDI added some NAS devices to list target (WD, Synology NAS) in their Pwn2Own
contest

• Last year, I participated in Pwn2Own, I found 4 bugs and successful pwned 3 different NAS
devices: WD Home Cloud NAS (release version), WD Home Cloud NAS (beta version) and WD Pro
PR4100 NAS.

• Attack surface: File service

4

File service in NAS devices
Architecture

•WD Home Cloud (release version)

Arm 32bit little endian

•WD Home Cloud (beta version)

Arm 32bit little endian

•WD Pro PR4100

Arch64 little endian

5

File service in NAS devices
File Service

• Usually, NAS devices implemented at least one File Service to support file sharing, file printing,
file backup.

• I will focus on 2 popular file services: *netatalk afpd* and *samba smbd*

•WD Home Cloud (release version) and WD Pro Pr4100 implement both *afpd* and *smbd*

•WD Home Cloud (beta version) implement *smbd*

• Version:
• Netatalk afpd : v3.1.12
• Samba smbd : v4.9.5

6

File service in NAS devices
Configuration

• Usually, in NAS devices, at least, there is one public share folder.

• Some features also are implemented, for example: *Time Machine Backup*

-> extend the attack surface

7

File service in NAS devices
afpd configuration

• `uams_guest.so` is declared in `uam list`, it accepts guest authentication.

• *TimeMachineBackup* is a public share folder

8

File service in NAS devices
smbd configuration

• *TimeMachineBackup* is a public
share folder

• `guest ok = yes` is declared, it allows
guest authentication

• The `vfs objects` list contains 3 modules:
catia, *fruit*, *streams_xattr*

• *vfs_fruit*: Enhanced OS X and
Netatalk interoperability

9

File service in NAS devices
Mitigation

• afpd (WD Home)

• afpd (WD Pro)

• smbd (WD Home Beta)

10

Bug in processing `appl` file
Target

• 2 bugs in *afpd*

• Bugs were used to exploit the WD Home Cloud (release version)

11

Bug in processing `appl` file
Background

• *appl* file store database information when user read/write to files.

• In *afpd*, it has extension “.appl” and it is stored in `dbpath` which is declared in afpd.conf

• In *afpd*, there are 2 functions to create/delete *appl* file: `afp_addappl` and `afp_rmvappl`.
Both functions require authentication to access. When call these functions, user will submit a
`creator` value, then based on this value, a
appl file is processed.

• *appl* file content: contains multiple chunks,
chunk format:
• `appltag`: 0x4 bytes, user supplied
• `mlen`: 0x2 bytes, size of absolute path
• `absolute path`: maximum 0x1000 bytes, it is

absolute path of requested file by user.

12

Bug in processing `appl` file
Background

`afp_addappl` function flowchart:

13

Bug in processing `appl` file
Stack Out-Of-Bounds Write # root cause

MAXPATHLEN = 0x1000 read 6 bytes
(mlen (2 bytes) + appltag (4 bytes))

read absolute path

append chunk to temporary file

14

Bug in processing `appl` file
Stack Out-Of-Bounds Write # root cause

• As mentioned above, maximum size of a chunk is 0x1000 + 6 = 0x1006

• `buf` is a stack-based buffer, size 0x1000

• Calling `read` function at line 99 cause Stack Out-Of-Bounds Write

•With 6 bytes Out-Of-Bounds Write -> overwrite `len`

• Calling `write` function at line 104 cause writing a truncated chunk to temporary *appl* file

15

Bug in processing `appl` file
Stack Out-Of-Bounds Write # root cause
• The next time function `copyapplfile` parses corrupted *appl* file, the calling `read` at line 99
might cause Stack Out-Of-Bounds Write, and we could overwrite return address in stack -> RCE

• Here is a sample payload cause corrupting *appl* file:

16

Bug in processing `appl` file
Stack Out-Of-Bounds Write # exploitation
This bug is used to exploit WD Home Cloud (release version)

• Architecture: arm 32 bit

•Mitigation: ASLR + PIE

Notes

• The maximum size of filename in linux is 256, we need 0x1000 bytes -> we need to create
multiple nested folder.

• Since absolute path cannot contains null char -> cannot store pointer address in it

• Red filename will overwrite the `len` value in stack, I set it to 0xf60, when translate to ascii, it is
`\x60\0xf`, still valid to use in filename

• sizeof `appltag` == 4 bytes and controllable by user -> we will place malform `mlen` and
malform return address in it.

17

Bug in processing `appl` file
Stack Out-Of-Bounds Write # exploitation
Step 1. Bypass ASLR

• *afpd* is multi-process server, using `fork` to create child process to handle a new connection
-> we could partial overwrite ret address to bruteforce PIE base address.

• Partial overwrite origin ret address not work, because $r11 register is overwritten in stack and
parent function use $r11 -> always crash

• I used timebase bruteforce method instead

• 2 address is different, but difference is not
too large (< 0x2000) -> bruteforce still work

• 1st byte is always in range 0xa0 - 0xaf
-> maximum 16 + 256 + 16 = 288 attempts to successful bruteforce PIE base address

18

Bug in processing `appl` file
Stack Out-Of-Bounds Write # exploitation
Step 2. Execute command as root

• Use the following gadget:

• Since the file content is copied to stack -> we could put address of command in file content

• The final payload:

• Blue’s `appltag` contains malformed length
• Green’s `appltag` contains address of above gadget
• Purple’s `appltag` contains address of command

`afprun_bg` function run
command with root privilege

19

Bug in processing `appl` file
Race condition # root cause

Open/Create the
`tempfile` to edit

Contruct new chunk

Append new chunk to
`tempfile`

20

Bug in processing `appl` file
Race condition # root cause

• *afpd* is a multiple processes service – each command is processed in a separated process

• At line 251 and 270, perform file operator without lock.

• Sending multiple add appl file commands with same `creator` value -> multiples process
processed a same file -> race condition

• Race condition -> chunks data might overlap each other -> corrupt the temporary appl file

21

Bug in processing `appl` file
Race condition # root cause

• As mentioned before, when function `copyapplfile` parses corrupted *appl* file, the calling
`read` at line 99 might cause Stack Out-Of-Bounds Write, and we could overwrite return address
in stack -> RCE

• Here is a sample payload cause corrupting *appl* file:

22

Bug in processing `appl` file
Race condition # exploitation

This bug is used to exploit WD Home Cloud (release version)

Architecture: arm 32 bit

Mitigation: ASLR + PIE

23

Bug in processing `appl` file
Race condition # exploitation
Step 1. Bypass ASLR

• Can reuse timebased bruteforce ?

• Race condition + bruteforce seems not reliable

• Need a information disclosure vulnerability

24

Bug in processing `appl` file
Race condition # exploitation
Step 2. Execute command as root

• Use the following gadget:

• Since the file content is copied to stack -> we could put address of command in file content

• The race condition also occurred in `afp_rmappl` -> could race between `afp_addappl` and
`afp_rmappl` processes

`afprun_bg` function run
command with root privilege

25

Bug in processing `appl` file
Race condition # exploitation
Step 2. Execute command as root

26

Bug in processing `appl` file
Race condition # exploitation
Step 2. Execute command as root

•Malformed length is lied on the end of Blue’s directory name

• I choose `Malformed length` is 0x1108, translated to ascii name: `\x08\x11` - still valid to use as
directory name

• Green’s `appltag` contains address of gadget

• Purple’s `appltag` contains address of command

27

Bug in processing `appl` file
Bonus
Netatalk weak hash function leads to information disclosure
• Bug is in “uams_dhx2_passwd.so”
• Using weak hash function to hash a pointer ??

• *Session ID* value here will be sent back to client later

Session ID is generated
by `dhxhash` function

Calculate hash
by xor🤔

28

Bug in processing `appl` file
Bonus
Netatalk weak hash function leads to information disclosure
• `obj` is a global pointer -> located in the .text section
• The NAS running 32bit OS -> 1st byte and 4th byte are known
• We could calculate the 2nd byte and 3rd byte from *Session ID*

-> bypass ASLR

29

Bug in processing file ‘s `xattr`
Target

• 2 bugs: one in *afpd* and one in *smbd*

• Bugs were used to exploit the WD Pro PR4100 and WD Home Cloud (beta version)

30

Bug in processing file ‘s `xattr`
Background

• Extended attributes (xattr) are *name:value* pairs associated permanently with files and
directories

• Both *afpd* and *smbd* have command to allow user to set xattr for a file/directory (require
authentication).

• Some special xattr will be parsed when process files

31

Bug in processing file ‘s `xattr`
Background

In case of *afpd*:

• `afp_setextattr` command is responsible to set the *value* of the extended attribute identified
by *name* and associated with the given path in the filesystem.

• It is done by invoking `setxattr`/`lsetxattr`/`fsetxattr` function.

• No checking in whole process -> user can set arbitrary *name*:*value* xattr

32

Bug in processing file ‘s `xattr`
Background

• `ad_open` function is responsible to open file.

• Some special xattrs are parsed here, one of them is AD_EA_META: "org.netatalk.Metadata"

• As mentioned before, no checking in the `afp_setextattr` function -> user can set the malform
"org.netatalk.Metadata" xattr.

33

Bug in processing file ‘s `xattr`
Background

`parse_entries` function call stack

34

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Access # root cause

Get `eid`, `off` and `len`
from ea metadata

Fill up
`struct adouble *ad` object

35

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Access # root cause

• Each entry in `struct adouble *ad` object has format:

• There are some checks to prevent accessing out-of-bounds of `ad->ad_eid` array
and `ad->ad_data` buffer

• But no check if the `off` and `len` are valid for a specific `eid` -> leads to multiple Out-Of-Bounds
access when use `struct adouble *ad` later.

• `eid`: ID of entry
• `off` is offset value from `ad->ad_data` buffer
• `len` is size of value.

36

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Read # root cause

(adp->ad_data + adp->ad_eid[ADEID_FINDERI].ade_off)

37

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Read # root cause

• Line 87, get `ad_finder` pointer from `struct adouble *adp`. As mentioned above, `ad_finder`
could point to the last byte of `adp->ad_data` buffer.

• Line 90, calling `memcpy` with the fixed size - 32, lack of the check if
32 > `adp->ad_eid[ADEID_FINDERI].ade_len` -> out-of-bounds read issue.

• The `data` will be sent back to user later -> information disclosure

• `adp->ad_data` is a stack-based buffer -> leak pie base address.

38

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Write # root cause

Get `clen` from user-supplied buffer

(adp->ad_data + adp->ad_eid[ADEID_COMMENT].ade_off)

39

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Write # root cause

• Line 872, get pointer from `struct adouble *adp`. As mentioned above, this pointer could point
to the last byte of `adp->ad_data` buffer.

• Line 872, calling `memcpy` with the controllable len `clen`, lack of the check if
`clen` > `adp->ad_eid[ADEID_FINDERI].ade_len` -> out-of-bounds write issue.

• `adp->ad_data` is a stack-based buffer -> could overwrite the return address in stack.

40

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Access # exploitation

This bug is used to exploit WD Pro Pr4100

Architecture: aarch64

Mitigation: ASLR + PIE

41

Bug in processing file ‘s `xattr`
Afpd Parsing xattr Out-Of-Bounds Access # exploitation

Step 1: Bypass ASLR

• Using Out-Of-Bounds Read to leak PIE base

Step 2: Execute command as root

• Using Out-Of-Bounds Write to overwrite the return address in stack with the following rop
chain:

Follow by address of a global buffer stored command + address of `afprun_bg` function

-> execute command as root

42

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Access # root cause

• *smbd* also provide to user a command to set xattr of a file/directory.

• It is done by `set_ea` function.

• The *name* of our attribute must not be in the private *Samba* attribute name list
(`user.SAMBA_PAI`, `user.DOSATTRIB`, `user.SAMBA_STREAMS`, `security.NTACL`)

•When *fruit* module process file/directory, it also parse some special xattr values, such as
AFPINFO_EA_NETATALK: "org.netatalk.Metadata"

• `AFPINFO_EA_NETATALK` is not in the private attribute name list -> user can submit a malform
xattr value

43

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Access # root cause

It is very similar to the *afpd* ‘s `parse_entries` function

Get `eid`, `off` and `len`
from xattr value

Fill up
`struct adouble *ad` object

44

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Read # root cause

Create `struct adouble` object
from metadata

p = ad->data + ad->ad_eid[ADEID_FINDERI].ade_off

45

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Read # root cause

• Line 4285, get `p` pointer from `struct adouble *ad`. As mentioned above, `p` could point to the
last byte of `ad->ad_data` buffer.

• Line 4293, calling `memcpy` with the fixed size - 32, lack of the check if
32 > `ad->ad_eid[ADEID_FINDERI].ade_len` -> out-of-bounds read issue.

• The `data` will be sent back to user later -> information disclosure

• `ad->ad_data` is a heap-based buffer.

46

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Write # root cause

Create `struct adouble` object
from metadata

p = ad->data + ad->ad_eid[ADEID_FINDERI].ade_off

47

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Write # root cause

• Line 4664, get `p` pointer from `struct adouble *ad`. `p` pointer could point to the last byte of
`ad->ad_data` buffer.

• Line 4671, calling `memcpy` with the fixed size - 32, lack of the check if
32 > `ad->ad_eid[ADEID_FINDERI].ade_len` -> out-of-bounds write issue.

• `ad->ad_data` is a heap-based buffer.

48

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Access # exploitation

This bug is used to exploit WD Home Cloud (beta version)

• Architecture: arm 32 bit

•Mitigation: ASLR + PIE

49

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Access # exploitation

Backgound

• *Smbd* implements both glibc ‘s `ptmalloc` and its own `talloc` memory allocation.

• Chunk format:

Talloc chunk
• flags: chunk canary + some flags
• next, prev: point to the next/prev chunk
• destructor: function pointer, will be

invoked when chunk is free

Ptmalloc chunk:
• fd, bk: point to the next/prev chunk

50

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Access # exploitation

Step 1. Bypass ASLR

• Require spray heap to create both `ptmalloc` chunk and `talloc` chunk

• Able to read up to 24 bytes past end of `ad->ad_data` chunk
• Leak `talloc.flags` to bypass chunk canary check
• Leak `talloc.next`, `talloc.prev` to know heap address
• Leak `ptmalloc.fd`, `ptmalloc.bk` to know libc address (because it might point to main_arena)

51

Bug in processing file ‘s `xattr`
Smbd Parsing xattr Out-Of-Bounds Access # exploitation

Step 2. Control the $pc

•We know chunk canary -> can forge a valid `talloc` chunk in heap address

•We know heap address -> overwrite `next` pointer in a in used `talloc` chunk by our forge chunk
-> when this in used `talloc` chunk is freed -> our forge chunk is also freed -> invoke `destructor`
function

•We know libc address -> calculate other shared lib address -> set proper address in `destructor`
function pointer -> execute command as root

52

Summary
Conclusion
• Check configuration of file service running on NAS/router devices, it might contains addition
feature -> extend attack surface

• Same feature might contain same bug pattern

TODO
• Does the fuzzer work ?

• Samba: Check remain modules which declared in `vfs objects` list

53

Thanks for listening
Nguyen Hoang Thach (@hi_im_d4rkn3ss)

STAR Labs SG Pte. Ltd.

54

