
Mohamed GHANNAM (@_simo36)

Attacking Apple’s Neural Engine

https://twitter.com/_simo36


Who am I
Independent Security Researcher based in Dubai:

Open source:

• Focus on iOS/macOS security.

• Previously on Linux/Android kernel.

• ghidra_kernelcache.

• Public exploits: powend, oob_events .

• Vuln Research & Exploitation.

• Disclosed 50+ user/kernel bugs to vendors.



Agenda
Apple’s Neural Engine Architecture

Vulnerabilities

Exploitation

• CoreML/coremltools.

• System Services/Kernel/Firmware.

• User/Kernel vulnerabilities.

• Chaining bugs to achieve kernel r/w on *OS 15.x / macOS 12.x.

Conclusion

• Model formats.



Apple’s Neural Engine Architecture



CoreML framework used to:

The user interface

• Integrated trained models into Xcode apps.

coremltools python library that:

• Creates models from scratch.

• Converts trained models from other ML tools into CoreML.

• Loads models and makes predictions.

• Manipulates/Customizes network layers and operations.

Tools & Frameworks

• Load models and on-device training.

• Make predictions.



The user interface
CoreML loads models through aned system service:

• XPC Interface : com.apple.appleneuralengine .

• Main broker for CoreML interactions with the kernel and the compiler service.

• Responsible for Model compilation and loading.



The user interface

aned compiles a model  through the ANE compiler ANECompilerService:

• XPC Interface : com.apple.ANECompilerService.

• Model Translation & Compilation.

• Entitled: com.apple.ANECompilerService.allow. 

• Produces a binary model “model.hwx”.



Model Formats
.mlmodel .mlmodelc net.plist model.hwx

• MLModel is converted to MLModelc (ProtoBuf to JSON format):

• MLModelc is translated to net.plist (from a set of JSON files to one PLIST file) :

• net.plist is compiled to a binary model called “model.hwx”:

• The model translation is made by Espresso private framework.

• The compilation can also be done via coremlcompiler command.

• The compilation is done by ANECompiler`ANECCompile() 

• The model.hwx is a Mach-O file that starts with 0xfeedface or 0xbeefface.

• The model.hwx has segments / sections .. etc



The kernel interface
• The kernel extension is AppleH11ANEInterface.

• The KEXT provides two UserClient classes: H11ANEInUserClient and H11ANEInDirectPathClient.

• H11ANEInUserClient: (for aned)
• Responsible for loading/unloading models.

• A lot of external methods with rich features (large attack surface).

• Entitled: com.apple.ane.iokit-user-access.

• H11ANEInDirectPathClient: (for Xcode apps)
• Responsible for model predictions and on-device training.

• Allows apps to Send Procedure Calls Requests to the firmware.

• Reachable from the default app sandbox (an attractive target).



The Firmware interface
• The firmware image can be found at ./Firmware/ane/ in IPSW files.

• CANEController::CmdProcessor() is the main function that parses ~70 commands.

CANEController::CmdProcessor() 



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

• CoreML compiles “file.mlmodel” to “file.mlmodelc”

Firmware

mlmodelc_url = [MLModel compileModelAtURL:@"file.mlmodel" error:&err];

file.mlmodel

file.mlmodelc

Load

Compile

$ xcrun coremlcompiler compile file.mlmodel



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

file.mlmodel

file.mlmodelc

Load

Compile



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

file.mlmodel

file.mlmodelc

Load

Compile

NSXPC

• CoreML initiates a connection with aned via com.apple.appleneuralengine

_ANEModel *md = [_ANEModel modelAtURL:mlmodelc key:@""];

• CoreML sends a request to load “file.mlmodelc” 

[[_ANEClient sharedConnection] loadModel:md options:opts qos:0x15 error:&err];



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC

• aned initiates a connection with ANECompilerService via com.apple.ANECompilerService

NSXPC

-[_ANEServer doCompileModel:myANEModel csIdentity: sandboxExtension: options:MyOptionDict qos: withReply:]

-[connection compileModelAt:csIdentity:sandboxExtension:options:tempDirectory:cloneDirectory:outputURL:withReply:]



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist
• “file.mlmodelc” is translated to “net.plist” using Espresso framework

Translation

+[_ANEEspressoIRTranslator translateModelAt: key: outputPath: isEncryptedModel: error:]



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist
• “file.mlmodelc” is translated to “net.plist” using Espresso framework

Translation

+[_ANEEspressoIRTranslator translateModelAt: key: outputPath: isEncryptedModel: error:]

model.hwx

Compilation

• “net.plist” is compiled to “model.hwx” using ANECompiler`ANECCompile() function

+[_ANECompiler 
compileModel:modelPath:optionsFilePath:outputFilename:outputPath:saveSourceModelPath:isEncryptedModel:isMILModel:ok:error:]



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” path



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” pathLoad “model.hwx” content

+[_ANEStorageHelper memoryMapModelAtPath: isPrecompiled: modelAttributes: ]
fd = open(“$PATH/model.hwx”); ptr = mmap(fd); return NSData(ptr)



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” pathLoad “model.hwx” content

Create Program Instance

ANE_ProgramCreate(H11ANEProgramCreateArgsStruct)

ANEServices



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” pathLoad “model.hwx” content

Create Program Instance

ANE_ProgramCreate(H11ANEProgramCreateArgsStruct)

ANEServices

Allocate H11ANEProgramBufferParams

H11ANEIn::AneMachoSignatureCheck()

ZinComputeProgramMake()

isPrecompiled?

Allocate sCSneCmdProgramLoad
Parse Mach-O

Populate sCSneCmdProgramLoad

H11ANEIn::aneCmdSend(sCSneCmdProgramLoad)

Create a programHandle

Prepare FW Command

Send FW command

Store ProgramBuffer

Success ?

Returns the 
programHandle 



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” pathLoad “model.hwx” content

Create Program Instance

ANE_ProgramCreate(H11ANEProgramCreateArgsStruct)

ANEServices

Allocate H11ANEProgramBufferParams

H11ANEIn::AneMachoSignatureCheck()

ZinComputeProgramMake()

isPrecompiled?

Allocate sCSneCmdProgramLoad
Parse Mach-O

Populate sCSneCmdProgramLoad

H11ANEIn::aneCmdSend(sCSneCmdProgramLoad)

CANEController::CmdProcessor()

CAneProgramManager::AddProgram()

Command ID: CSNE_CMD_LOAD_PROGRAM

Create a programHandle

Prepare FW Command

Send FW command

Store ProgramBuffer

Success ?

Returns the 
programHandle 



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” path

Update _ANEModel attrs

+ 

programHandle



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” path

Update _ANEModel attrs

+ 

programHandlemodel.predict(input)

ANE_ProgramSendRequest(H11ANEProgramRequestArgsStruct)

programHandle



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” path

Update _ANEModel attrs

+ 

programHandlemodel.predict(input)

ANE_ProgramSendRequest(H11ANEProgramRequestArgsStruct)

programHandle

lookup ProgramBuffer via programHandle

Prepare Procedure Input/Output/Intermediate Surfaces

Allocate + Populate sCSneCmdProcedureCall

H11ANEIn::aneCmdSend(sCSneCmdProcedureCall)



Apple’s Neural Engine Architecture
Client/CoreML aned ANECompilerService

User space

Kernel

Firmware

NSXPC NSXPC

net.plist

Translation

model.hwx

Compilation“model.hwx” path

Update _ANEModel attrs

+ 

programHandlemodel.predict(input)

ANE_ProgramSendRequest(H11ANEProgramRequestArgsStruct)

programHandle

lookup ProgramBuffer via programHandle

Prepare Procedure Input/Output/Intermediate Surfaces

Allocate + Populate sCSneCmdProcedureCall

H11ANEIn::aneCmdSend(sCSneCmdProcedureCall)

CANEController::CmdProcessor()

CAneCallManagerH11::SendCall()

Command ID: CSNE_CMD_PROCEDURE_CALL



References

•BlackHat ASIA 21 Wish Wu: Apple Neural Engine Internals

•George Hotz | Programming | tinygrad: triggering the Apple Neural 
Engine from C++

•Hollance : The Neural Engine — what do we know 
about it?

https://i.blackhat.com/asia-21/Friday-Handouts/as21-Wu-Apple-Neural_Engine.pdf
https://www.youtube.com/watch?v=JAyw7OAcXDE&ab_channel=georgehotzarchive
https://www.youtube.com/watch?v=JAyw7OAcXDE&ab_channel=georgehotzarchive
https://github.com/hollance/neural-engine
https://github.com/hollance/neural-engine


Vulnerabilities



Vulnerabilities



Vulnerabilities
CVE-2022-32840: ANE_ProgramSendRequest() OOB write.



H11ANEProgramRequestArgsStruct

• The program ID for the model in the kernel.

• The procedure ID to invoke.

• In/output and intermediate surface buffers.

CVE-2022-32840: ANE_ProgramSendRequest() OOB write



H11ANEProgramRequestArgsStruct

• The program ID for the model in the kernel.

• The procedure ID to invoke.

• In/output and intermediate surface buffers.

• Max total input/output is 255.

• Max total Intermediate buffer is 3.

CVE-2022-32840: ANE_ProgramSendRequest() OOB write



CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• Any validation for the total surface buffers ?



CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• Any validation for the total surface buffers ?

• No validation for total intermediate buffers



AppleH11ANEInterface from macOS 12.1 (~iOS 15.2)

CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• The SCBufArgs object size is 0x80

• A container of intermediate surface buffer 
information

• SCBufArgs is H11ANESharedClientBufferArgs



AppleH11ANEInterface from macOS 12.1 (~iOS 15.2)

H11ANESharedClientBufferArgsStruct

CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• The SCBufArgs object size is 0x80

• A container of intermediate surface buffer 
information

• SCBufArgs is H11ANESharedClientBufferArgs



AppleH11ANEInterface from macOS 12.1 (~iOS 15.2)

H11ANESharedClientBufferArgsStruct

CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• The SCBufArgs object size is 0x80

• A container of intermediate surface buffer 
information

• The allocation is an array of 1 element of 
H11ANESharedClientBufferArgs

• SCBufArgs is H11ANESharedClientBufferArgs



H11ANEIn::ANE_ProgramSendRequest_gated()

• We are inside a loop that fills up the client buffer.

• The loop keeps copying data out-of-bounds.

CVE-2022-32840: ANE_ProgramSendRequest() OOB write



H11ANEIn::ANE_ProgramSendRequest_gated()

• We are inside a loop that fills up the client buffer.

• The loop keeps copying data out-of-bounds.

CVE-2022-32840: ANE_ProgramSendRequest() OOB write



H11ANEIn::ANE_ProgramSendRequest_gated()

• We are inside a loop that fills up the client buffer.

• The loop keeps copying data out-of-bounds.

CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• Buffer overflow in SCBufArgs by 0x80 * total_IntermediateBuffers.



CVE-2022-32840: ANE_ProgramSendRequest() OOB write

• total_IntermediateBuffers = 2 is sufficient crash the kernel.



Vulnerabilities
CVE-2022-32840: OOB writes in ANE_ProgramSendRequest().

CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is a mapping of an IOSurface buffer.

• The IOSurface object is from structureInput->weightSurfaceId.

• ANECMutableProcedureInfo content is completely under user-control.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is a mapping of an IOSurface buffer.

• The IOSurface object is from structureInput->weightSurfaceId.

• ANECMutableProcedureInfo content is completely under user-control.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

ANECMutableProcedureInfo is a user-controlled object



CVE-2022-42805: ZinComputeProgramUpdateMutables() integer 
overflow

weight_buffer_size: the total size of ANECMutableProcedureInfo

wb_offset[n]: the starting position of OperationInfo[n]

op_offset[m]: the starting position of weightInfo[m]



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is a mapping of an IOSurface buffer.

• The IOSurface is taken from from structureInput->weightSurfaceId.

• ANECMutableProcedureInfo content is completely under user-control.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is a mapping of an IOSurface buffer.

• The IOSurface is taken from from structureInput->weightSurfaceId.

• ANECMutableProcedureInfo content is completely under user-control.

• ANECValidateMutableProcedureInfo is called to verify the safety of the object.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

ANECValidateMutableProcedureInfo() call trace

• ANECValidateMutableProcedureInfo is called to verify the safety of the object passed to 
ZinComputeProgramUpdateMutables.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECValidateMutableProcedureInfo() validates the shared surface buffer.

ANECValidateMutableProcedureInfo



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECValidateMutableProcedureInfo() validates the shared surface buffer.

ANECValidateMutableProcedureInfo

• Integer overflow in the calculation at line 95.

• The security check could be bypassed by overflowing the calculation.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

•  ANECValidateMutableProcedureInfo() validated our object.

• ANECGetMutableWeight() is called to populate ANECMutableWeight .

• Because of the overflow, _weightBuf could point to any location outside the buffer range.

• This vulnerability could be turned into arbitrary memory read if the procedure_info address 
was known.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is allocated from KHEAP_DATA_BUFFERS .

KHEAP_DATA_BUFFERS



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is allocated from KHEAP_DATA_BUFFERS .

• Groom KHEAP_DATA_BUFFERS with a lot of  ipc_kmsg data buffers.

ipc_kmsg

KHEAP_DATA_BUFFERS

ipc_kmsg ipc_kmsg ipc_kmsg



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is allocated from KHEAP_DATA_BUFFERS .

• Groom KHEAP_DATA_BUFFERS with a lot of  ipc_kmsg data buffers.

MutableProcedureInfoipc_kmsg

KHEAP_DATA_BUFFERS

ipc_kmsg ipc_kmsg ipc_kmsg

• Allocate the ANECMutableProcedureInfo object.



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is allocated from KHEAP_DATA_BUFFERS .

• Groom KHEAP_DATA_BUFFERS with a lot of  ipc_kmsg data buffers.

MutableProcedureInfoipc_kmsg

KHEAP_DATA_BUFFERS

ipc_kmsg ipc_kmsg ipc_kmsg

• Allocate the ANECMutableProcedureInfo object.

-0x10000

• Overflow the calculation : weightInfo->wi_off = (0 - 0x10000);



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

• ANECMutableProcedureInfo is allocated from KHEAP_DATA_BUFFERS .

• Groom KHEAP_DATA_BUFFERS with a lot of  ipc_kmsg data buffers.

MutableProcedureInfoipc_kmsg

KHEAP_DATA_BUFFERS

ipc_kmsg ipc_kmsg ipc_kmsg

• Allocate the ANECMutableProcedureInfo object.

• Underflow the mw->_weightBuf location to point to an ipc_kmsg buffer.

-0x10000

• Overflow the calculation : weightInfo->wi_off = (0 - 0x10000);



CVE-2022-42805: ANECValidateMutableProcedureInfo() integer 
overflow

Demo: Leak the ipc_kmsg content to user-space.



Vulnerabilities
CVE-2022-32840: OOB writes in ANE_ProgramSendRequest().

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index validation.

CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.



• DeCxt::FileIndexToWeigh() is reachable from H11ANEInDirectPathClient::_ANE_ProgramSendRequest().

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index 
validation

DeCxt::FileIndexToWeight() call trace



• DeCxt::FileIndexToWeigh() is reachable from H11ANEInDirectPathClient::_ANE_ProgramSendRequest()

• Both index and offset are user-controlled parameters.

• weight_objects class member is an array of ANECMutableWeight.

• ANECMutableWeight  array allocation size is opsInfo->op_count from ANECMutableProcedureInfo (user controlled 
shared buffer)

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index 
validation



• DeCxt::FileIndexToWeigh() is reachable from H11ANEInDirectPathClient::_ANE_ProgramSendRequest()

• Both index and offset are user-controlled parameters.

• weight_objects class member is an array of ANECMutableWeight.

• ANECMutableWeight  array allocation size is opsInfo->op_count from ANECMutableProcedureInfo (user controlled 
shared buffer)

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index 
validation



• DeCxt::FileIndexToWeigh() is reachable from H11ANEInDirectPathClient::_ANE_ProgramSendRequest()

• Both index and offset are user-controlled parameters.

• weight_objects class member is an array of ANECMutableWeight.

• ANECMutableWeight  array allocation size is opsInfo->op_count from ANECMutableProcedureInfo (user controlled 
shared buffer)

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index 
validation



• DeCxt::FileIndexToWeigh() is reachable from H11ANEInDirectPathClient::_ANE_ProgramSendRequest()

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index 
validation

• The lack of index validation allows reading out-of-bounds ANECMutableWeight objects.

• By grooming kernel memory, the attacker can read data from arbitrary kernel pointer with arbitrary size.



Vulnerabilities
CVE-2022-32840: OOB writes in ANE_ProgramSendRequest().

CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index validation.



Vulnerabilities

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write.

CVE-2022-32840: OOB writes in ANE_ProgramSendRequest().

CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index validation.



CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write

DeCxt::RasterizeScaleBiasData() call trace



CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write

DeCxt::RasterizeScaleBiasData() prototype

• The function converts floating-point values from single-precision to half-precision.

• param_1, param_2 and param_3 are user-controlled input.



DeCxt::RasterizeScaleBiasData() prototype

• param_1 is 64-bit value and it’s user-controlled input.

From DeCxt::ProcessOneInitItem()

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() prototype

• param_2 is 16-bit value and it’s user controlled input.

From DeCxt::ProcessOneInitItem()

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() prototype

• param_3 is deserialized by DeCxt::ParseOcgRasterizationInfo().

Called by DeCxt::ProcessOneInitItem()

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() prototype

• MUTK_kernel_section is an IOSurface mapped buffer created by the kernel.

H11ANEIn::ANE_ProgramCreate_gated

• Created by H11ANEIn::AllocateSharedMemorySurface() .

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() 

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() 

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() 

• A sanity check for a potential integer overflow in the calculation at line 16.

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() 

• A sanity check for a potential integer overflow in the calculation at line 16.

•  The sanity checks does NOT prevent from integer underflow.

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::RasterizeScaleBiasData() 

• A sanity check for a potential integer overflow in the calculation at line 16.

•  The sanity checks does NOT prevent from integer underflow.

• Buffer underflow that allows to write arbitrary data to any location prior the 
MUTK_kernel_section address.

• Up to 0x20000 bytes of user-controlled data could be written.

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



Kernel panic occurs because x25 = 0x4141414142424242

Could be turned into arbitrary kernel write if the location of MUTK_kernel_section was known.

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



• Another OOB read/write in DeCxt::RasterizeScaleBiasData(). 


• Because offset and pos are fully user-controlled and not validated before their usage.

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



• Another OOB read/write in DeCxt::RasterizeScaleBiasData(). 


• Because offset and pos are fully user-controlled and not validated before their usage.

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB write



DeCxt::FileIndexToWeight() call trace

DeCxt::RasterizeScaleBiasData() call trace

ANECValidateMutableProcedureInfo() call trace



DeCxt::FileIndexToWeight() call trace

DeCxt::RasterizeScaleBiasData() call trace

ANECValidateMutableProcedureInfo() call trace



How to reach H11ANEIn::patchMutableSurface() ?



How to reach H11ANEIn::patchMutableSurface() ?

• The model.hwx (Mach-O file ) must have some special flags in some mach sections.

• The model.hwx must have a procedure (Neural Network) with mutable features.

Requirements: 



How to reach H11ANEIn::patchMutableSurface() ?

• The model.hwx (Mach-O file ) must have some special flags in some mach sections.

• To understand the compilation/translation options available, you need to RE some 
private frameworks yourself : mlcompiler, Espresso and ANECCompiler.

• Good luck reversing frameworks written in C++ and STL.

• No documentation available.

• The model.hwx must have a procedure (Neural Network) with mutable features.

Failed to fulfill them because :

Requirements: 



• The model is a Mach-O file and easy parse and edit

• aned allows loading binary models without compilation  (with some constraints) and can 
do the work on you behalf.

How to reach H11ANEIn::patchMutableSurface() ?

1. Patch an existing model.hwx file

2. Load a patched model.hwx via aned

• You can’t directly provide a native model by yourself to the kernel (unless you have a 
special entitlement).



• aned loads different model formats according to the given dictionary options:

• {kANEFModelType : kANEFModelPreCompiled } ⇒  Loads model.hwx from arbitrary location.

• {kANEFModelType : nil } ⇒ Compiles + Loads .mlmodelc .

• {kANEFIsInMemoryModelTypeKey : <model> } ⇒ Loads model.hwx from the cache directory.

Load a malformed model.hwx (Mach-O) file

• aned can loads model.hwx from two different locations:

• Cache Directory: Loads an already compiled model.

• Arbitrary location: Loads a compiled model from a given directory.



• *OS: /var/mobile/Library/Caches/com.apple.aned/<build no>/InMemoryModelCache

• macOS : /Library/Caches/com.apple.aned/<build no>/InMemoryModelCache

• Even root can’t read its content. Security Features need to be disabled in macOS .

From the cache directory using kANEFIsInMemoryModelTypeKey

Load a malformed model.hwx (Mach-O) file



From the cache directory using kANEFIsInMemoryModelTypeKey

Load a malformed model.hwx (Mach-O) file



From the cache directory using kANEFIsInMemoryModelTypeKey

• Get the cache directory location.

<CacheDir>/InMemoryModelCache  /

Load a malformed model.hwx (Mach-O) file



From the cache directory using kANEFIsInMemoryModelTypeKey

• Get the cache directory location.

• Append csIdentity to that cache directory.

<CacheDir>/InMemoryModelCache  / <csIdentity>  /

Load a malformed model.hwx (Mach-O) file



From the cache directory using kANEFIsInMemoryModelTypeKey

• Get the cache directory location.

• Append csIdentity to that cache directory.

• Append kANEFIsInMemoryModelTypeKey value.

<CacheDir>/InMemoryModelCache  / <csIdentity>  / <model>  /

Load a malformed model.hwx (Mach-O) file



From the cache directory using kANEFIsInMemoryModelTypeKey

• Get the cache directory location.

• Append csIdentity to that cache directory.

• Append kANEFIsInMemoryModelTypeKey value.

• Append “model.hwx” string to the cache directory.

<CacheDir>/InMemoryModelCache  / <csIdentity>  / <model>  / model.hwx

Load a malformed model.hwx (Mach-O) file



• The model.hwx is loaded from the cache directory by: 

aned’[_ANEStorageHelper memoryMapModelAtPath:isPrecompiled:modelAttributes:]

From the cache directory using kANEFIsInMemoryModelTypeKey

Load a malformed model.hwx (Mach-O) file

<CacheDir>/InMemoryModelCache  / <csIdentity>  / <model>  / model.hwx



• The model.hwx is loaded from the cache directory by: 

aned’[_ANEStorageHelper memoryMapModelAtPath:isPrecompiled:modelAttributes:]

From the cache directory using kANEFIsInMemoryModelTypeKey

Load a malformed model.hwx (Mach-O) file

<CacheDir>/InMemoryModelCache  / <csIdentity>  / <model>  / model.hwx

-[_ANEServer loadModel:sandboxExtension:options:qos:withReply:]

• Send a request to the kernel to create the program:



• Send a request to the kernel to create the program with isPrecompiled=True.

Kernel

User

From any location using kANEFModelPreCompiled

Load a malformed model.hwx (Mach-O) file

• The model.hwx file is loaded from arbitrary location

aned’[_ANEStorageHelper memoryMapModelAtPath:isPrecompiled:modelAttributes:]

With isPrecompiled = True

aned`-[_ANEServer loadModel:sandboxExtension:options:qos:withReply:]



aned`-[_ANEServer loadModel:sandboxExtension:options:qos:withReply:]

• Send a request to the kernel to create the program with isPrecompiled=True.

From H11ANEIn::ANE_ProgramCreatePreprocessing()

Kernel

User

From any location using kANEFModelPreCompiled

Load a malformed model.hwx (Mach-O) file

• The model.hwx file is loaded from arbitrary location



Load a malformed model.hwx (Mach-O) file

• Only the models that were compiled by Apple can be loaded from any location.

• Our (malicious) model needs to be located in the cache directory in order to be 
loaded.

• As a result: there’s no legitimate way to load a modified model.

Takeaways:

Solution ?



Load a malformed model.hwx (Mach-O) file

• Only the models that were compiled by Apple can be loaded from any location.

• Our (malicious) model needs to be located in the cache directory in order to be 
loaded.

• Find a vulnerability to trick aned to load our malicious (non-signed)  
model.hwx.

• As a result: there’s no legitimate way to load a modified model.

Takeaways:

Solution ?



Vulnerabilities

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB writes.

CVE-2022-32840: OOB writes in ANE_ProgramSendRequest().

CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index validation.



Vulnerabilities

CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB writes.

CVE-2022-32840: OOB writes in ANE_ProgramSendRequest().

CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.

CVE-2022-32948: DeCxt::FileIndexToWeight() improper index validation.

CVE-2022-32845: aned signature check bypass for model.hwx.



From the cache directory using kANEFIsInMemoryModelTypeKey

• Get the cache directory location

• Append csIdentity to that cache directory.

• Append kANEFIsInMemoryModelTypeKey value.

• If found, Append “model.hwx” string to the cache directory.

CVE-2022-32845: aned signature check bypass for model.hwx 

<CacheDir>/InMemoryModelCache  / <csIdentity>  / <model>  / model.hwx



From the cache directory using kANEFIsInMemoryModelTypeKey

• Get the cache directory location

• Append csIdentity to that cache directory.

• Append kANEFIsInMemoryModelTypeKey value.

• If found, Append “model.hwx” string to the cache directory.

CVE-2022-32845: aned signature check bypass for model.hwx 

<CacheDir>/InMemoryModelCache  / <csIdentity>  / model.hwx

• Directory Traversal in kANEFIsInMemoryModelTypeKey  value.

<../../../../>  /



Directory Traversal in kANEFIsInMemoryModelTypeKey  value

• kANEFIsInMemoryModelTypeKey value is not sanitized.

CVE-2022-32845: aned signature check bypass for model.hwx 

• However the model’s cache directory path must first be created.

• Load a malformed model.hwx outside of the cache directory by exploiting 
the path traversal input.

<CacheDir>/InMemoryModelCache  / <csIdentity>  / model.hwx<../../../../>  /

• We need to compile a mlmodelc to create the directory.



Proof Of Concept: Load a malformed model.hwx 

• Send  foo.mlmodelc as a model directory to aned for loading. 

• aned calls ANECompilerService to compile the model under foo.mlmodelc directory.  

• ANECompilerService creates foo directory in the cache directory then saves the compiled 
model.hwx for later use

Step 1: Create a model directory in the cache

<CacheDir>/InMemoryModelCache  / <csIdentity>  / model.hwx foo  /



Proof Of Concept: Load a malformed model.hwx 

• Create an option dictionary with  {kANEFIsInMemoryModelTypeKey : bar_path }.

Where bar_path = ../../../../../../../../../../../../bar

• Call aned to load the model from kANEFIsInMemoryModelTypeKey path: 

-[_ANEInMemoryModelCacheManager cachedModelPathMatchingHash:csIdentity:] is called to 
retrieve the cache directory for that model

• +[_ANEStorageHelper memoryMapModelAtPath:isPrecompiled:modelAttributes:] to load malicious_model.hwx from 
the malicious path with isPrecompiled = False.

Step 2: Craft a traversal path to load malicious model.hwx 

• Put the malformed model.hwx in a directory bar.

<CacheDir>/InMemoryModelCache  / <csIdentity>  / /  malicious_model.hwx foo  / ../../../../../../../../../../../../bar



Proof Of Concept: Load a malformed model.hwx 

Proof of concept exploit for macOS & iOS 



Exploitation



Build an arbitrary kernel r/w primitive



• The exploit chains 4 vulnerabilities

• CVE-2022-32845: aned signature check bypass for model.hwx.  

• CVE-2022-32948: DeCxt::FileIndexToWeight() improper index validation. 

• CVE-2022-42805: ANECValidateMutableProcedureInfo() integer overflow.

• CVE-2022-32899: DeCxt::RasterizeScaleBiasData() OOB writes.

• The exploitation could've been done with less amount of bugs.

Build an arbitrary kernel r/w primitive



Build an arbitrary kernel r/w primitive

• tfp0 techniques are dead since iOS 14.0



Build an arbitrary kernel r/w primitive

• Overwrite IOSurfaceClient reference in IOSurfaceRootUserClient for arbitrary r/w:

• tfp0 techniques are dead since iOS 14.0

• First public appearance of the technique was in my oob_event kernel exploit for iOS 13.7

• Used to bypass zone_require() by corrupting corpse_task->map with kernel_map to gain 
tfp0

Snippet from oob_event exploit



Build an arbitrary kernel r/w primitive

• Overwrite IOSurfaceClient reference in IOSurfaceRootUserClient for arbitrary r/w:

• tfp0 techniques are dead since iOS 14.0

• Used to bypass zone_require() by corrupting corpse_task->kernel_map to gain tfp0

• Build a fake IOSurface and use external methods for kernel r/w 

• First public appearance of the technique was in my oob_event kernel exploit for iOS 13.7



Build an arbitrary kernel r/w primitive

• Overwrite IOSurfaceClient reference in IOSurfaceRootUserClient for arbitrary r/w 

• John Åkerblom’s Zer0Con 2022 slides for more details 

• First public appearance of the technique was in my oob_event kernel exploit for iOS 13.7

• Apple mitigated the technique in iOS 15.3

• Build a fake IOSurface and use external methods for kernel r/w 

• Used to bypass zone_require() by corrupting corpse_task->kernel_map to gain tfp0

• tfp0 techniques are dead since iOS 14.0

https://github.com/potmdehex/slides/blob/main/Zer0Con_2022_Tales_from_the_iOS_macOS_Kernel_Trenches.pdf


<= iOS 15.2/macOS 12.1

IOSurface Security Changes 

• Useful when the attacker controls the p_Clients 
array or one of IOSurfaceClient objects.

• Use IOSurfaceID to lookup a fake IOSurfaceClient.

• Use IOSurfaceRootUserClient::set_indexed_timestamp() 
for arbitrary write.

• Use IOSurfaceRootUserClient::get_surface_use_count() 
for arbitrary read.



~ iOS 15.3

<= iOS 15.2/macOS 12.1

IOSurface Security Changes 

Apple introduced IOSurfaceRootUserClient::getSurfaceClient()



IOSurface Security Changes 
Apple introduced IOSurfaceRootUserClient::getSurfaceClient() which does the following:



• Pointer Authenticate IOSurfaceClient object when it’s looked-up via a given surface id.

IOSurface Security Changes 
Apple introduced IOSurfaceRootUserClient::getSurfaceClient() which does the following:



• Pointer Authenticate IOSurfaceClient object when it’s looked-up via a given surface id.

• IOSurfaceClient->user client reference matches the calling UserClient.

IOSurface Security Changes 
Apple introduced IOSurfaceRootUserClient::getSurfaceClient() which does the following:



• Pointer Authenticate IOSurfaceClient object when it’s looked-up via a given surface id.

• IOSurfaceClient->user client reference matches the calling UserClient.

• IOSurface->SurfaceRoot must match gIOSurfaceRoot value.

IOSurface Security Changes 
Apple introduced IOSurfaceRootUserClient::getSurfaceClient() which does the following:



• Strong validation checks for IOSurfaceClient objects:

IOSurface Security Changes 

• PAC Bypass is required to corrupt the array of IOSurfaceClient objects.
• IOSurfaceRootUserClient location is required to forge IOSurfaceClient.



• Strong validation checks for IOSurfaceClient objects:

IOSurface Security Changes 

• Weak validation checks for IOSurface objects: 

•  IOSurfaceRoot location is required.

• PAC Bypass is required to corrupt the array of IOSurfaceClient objects.
• IOSurfaceRootUserClient location is required to forge IOSurfaceClient.



• Strong validation checks for IOSurfaceClient objects:

IOSurface Security Changes 

• Weak validation checks for IOSurface objects: 

•  IOSurfaceRoot location is required.

• PAC Bypass is required to corrupt the array of IOSurfaceClient objects.

• No checks at all for IOSurface->SharedRO/RW pointers. 

• IOSurfaceRootUserClient location is required to forge IOSurfaceClient.



Build an arbitrary kernel r/w primitive

To achieve kernel r/w, corrupt IOSurfaceClient->IOSurface location with a fake 
IOSurface. The attacker needs  the following:

• Leak IOSurfaceRoot location to bypass IOSurfaceRootUserClient::getSurfaceClient() 
last check.

• Leak an IOSurfaceClient object location that’s created by the attacker.

• A write primitive to overwrite IOSurfaceClient->IOSurface is needed.

• A (Fake IOSurface) kernel pointer whose content is under the attacker’s control.



Build an arbitrary kernel r/w primitive
• For the write primitive, I used DeCxt::RasterizeScaleBiasData() OOB write to corrupt 

the target IOSurfaceClient object.

• To achieve this, the mutable kernel section (MUTK) address is required.

DeCxt::RasterizeScaleBiasData() 

Virtual kernel address space 

MUTK



MUTK

Virtual kernel address space 

• The OOB write can be used as:

Build an arbitrary kernel r/w primitive



MUTK

Virtual kernel address space 

• Near Writes: Write into any offset near to MUTK.

• The OOB write can be used as:

- 0x6000

Build an arbitrary kernel r/w primitive



MUTK

Virtual kernel address space 

• Near Writes: Write into any offset near to MUTK.

• The OOB write can be used as:

• Far Writes: Perform arbitrary write to any kernel memory below `MUTK`.

- 0x60000xfffffe24cefd59e0

Build an arbitrary kernel r/w primitive



MUTK

Virtual kernel address space 

• Near Writes: Write into any offset near to MUTK.

• The OOB write can be used as:

• Far Writes: Perform arbitrary write to any kernel memory below `MUTK`.

- 0x60000xfffffe24cefd59e0

• For Far Writes we need to locate the exact address of the MUTK buffer.

Build an arbitrary kernel r/w primitive



Leak ‘MUTK’ Section Mapping Address



Leak ‘MUTK’ Section Mapping Address

What is the 'MUTK' from the attacker’s perspective?

• It’s a private IOSurface mapped buffer created by the kernel.



Leak ‘MUTK’ Section Mapping Address

What is the 'MUTK' from the attacker’s perspective?

From H11ANEIn::ANE_ProgramCreate_gated()

• It’s a private IOSurface mapped buffer created by the kernel.



Leak ‘MUTK’ Section Mapping Address

• The buffer is allocated from IOKit Pageable Maps.

• It’s a private IOSurface mapped buffer created by the kernel.

What’s the mutable kernel ‘MUTK’ section ?



Leak ‘MUTK’ Section Mapping Address

• The buffer is allocated from IOKit Pageable Maps.

• The buffer is mapped by H11ANEIn::patchMutableSurface().

H11ANEIn::patchMutableSurface()

• It’s a private IOSurface mapped buffer created by the kernel.

What’s the mutable kernel ‘MUTK’ section ?



Leak ‘MUTK’ Section Mapping Address

H11ANEIn::patchMutableSurface()

• The mapping address is stored in ProgramBuffer object.

• All ‘MUTK’ information stored in H11ANESharedMemorySurfaceParamsStruct.

• MUTK buffer is mapped in the kernel via H11ANEIn::patchMutableSurface().

• Leak ProrgamBuffer->MUTK_Surface object to user-space to retrieve the 
MUTK buffer address.



Leak ‘MUTK’ Section Mapping Address

• H11ANEProgramBufferParamsStruct size is 0x53e70.

• kalloc_type()’ed object.

What’s a programBuffer from the attacker’s perspective  ?

• Big allocations don’t have a dedicated zone.

• Big allocations without zone fall into KHEAP_DEFAULT.

• Big allocations in KHEAP_DEFAULT with size > 0x8000 fall into kernel_map.

• H11ANEProgramBufferParamsStruct is allocated from kernel_map.



Leak ‘MUTK’ Section Mapping Address

H11ANEProgramBufferParamsStruct object structure:
H11ANEProgramBufferParamsStruct



Leak ‘MUTK’ Section Mapping Address

H11ANEProgramBufferParamsStruct H11ANESharedMemorySurfaceParamsStruct

• H11ANESharedMemorySurfaceParamsStruct object holds interesting IOSurface information 

• How to leak H11ANESharedMemorySurfaceParamsStruct content?

H11ANEProgramBufferParamsStruct object structure:



Leak ‘MUTK’ Section Mapping Address

• Use DeCxt::FileIndexToWeight() index to fetch programBuffer->MUTK_Surface[0] as a 
fake mutable weight buffer.

• Make one ProgramBuffer adjacent to ANECMutableWeight array.

• Because the ANECMutableWeight array allocation size is user-controlled, the 
attacker can direct the allocation to take place in kernel map.

• ANECMutableWeight allocations is a temporary.

DeCxt::FileIndexToWeight() lack of array index validation:

• To make ProgramBuffer and ANECMutableWeight near to each other, kernel_map 
grooming is required.



Leak ‘MUTK’ Section Mapping Address

Grooming kernel_map:

programBuffer programBuffer OSArray programBuffer programBuffer OSArray programBuffer programBuffer programBuffer OSArray

kernel_map

• Load multiple ProgramBuffer objects by creating several programs.

• Allocate an OSArray backing store of size 0x54000 between each 2 programBuffer objects.



Leak ‘MUTK’ Section Mapping Address

programBuffer OSArray programBuffer

kernel_map

• Load multiple ProgramBuffer objects by creating several programs.

• Allocate an OSArray backing store of size 0x54000 between each 2 programBuffer objects.

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

programBuffer OSArray programBuffer

kernel_map

Freed

• Release all the OSArray objects.

• Load multiple ProgramBuffer objects by creating several programs.

• Allocate an OSArray backing store of size 0x54000 between each 2 programBuffer objects.

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

programBuffer programBuffer

kernel_map

• Release all the OSArray objects.

• Allocate ANECMutableWeight array with size of 0x54000.

ANECMutableWeight

• Load multiple ProgramBuffer objects by creating several programs.

• Allocate an OSArray backing store of size 0x54000 between each 2 programBuffer objects.

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

kernel_map

Buffer Size

ANECMutableWeight(s) programBuffer

Buffer Size … MUTK_Surface[0] MUTK_Surface[1]

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

• Use DeCxt::FileIndexToWeight() lack of array index validation.

kernel_map

Buffer Size

ANECMutableWeight(s) programBuffer

Buffer Size … MUTK_Surface[0] MUTK_Surface[1]

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

• Use DeCxt::FileIndexToWeight() lack of array index validation.

kernel_map

Buffer Size

ANECMutableWeight(s) programBuffer

Buffer Size … MUTK_Surface[0] MUTK_Surface[1]

• index = (sizeof(ANECMutableWeight[]) + offsetof(programBuffer, MUTK_Surface[0]) / 
sizeof(ANECMutableWeight).

• index = ( 0x54000 + 0x53E10) / 0x10 = 0x000a7e1.

• The selected weight buffer is passed to DeCxt::ParseTransform() for processing.

• Then DeCxt::RasterizeScaleBiasData() stores the elements to `MUTK` IOSurface buffer.

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

• Use DeCxt::FileIndexToWeight() lack of array index validation.

kernel_map

Buffer Size

ANECMutableWeight(s) programBuffer

Buffer Size … MUTK_Surface[0] MUTK_Surface[1]

• index = (sizeof(ANECMutableWeight[]) + offsetof(programBuffer, MUTK_Surface[0]) / 
sizeof(ANECMutableWeight).

• index = ( 0x54000 + 0x53E10) / 0x10 = 0x000a7e1.

• The selected weight buffer is passed to DeCxt::ParseTransform() for processing.

• Then DeCxt::RasterizeScaleBiasData() stores the elements to `MUTK` IOSurface buffer.

Grooming kernel_map:



Leak ‘MUTK’ Section Mapping Address

• `MUTK` IOSurface object is private therefore its content cannot be read.

• `MUTK` IOSurface buffer is allocated from IOKitPageableMaps .

• Use the Near-Write to copy the leaked structure outside of the MUTK buffer 

• Groom IOKitPageableMaps is required.

MUTK buffer cannot be read by user-space:

• Because MUTK cannot be read, the OOB index bug is technically not exploitable.

• To make the OOB index exploitable, combine it with the OOB write vulnerability.

• The target location to write into must be readable by our process.



Leak ‘MUTK’ Section Mapping Address

MUTK

Virtual kernel address space 

IOKitPageableMaps

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Buffers that can be allocated in IOKitPageableMaps.

MUTK

IOKitPageableMaps

??????

• Those buffers can be shared with (or copy data out to) user-space process.

size = 0x4000 bytes

???

Grooming IOKitPageableMaps requirements:

• Shared memory FTW!



Leak ‘MUTK’ Section Mapping Address

• Buffers that can be allocated in IOKitPageableMaps.

MUTK

IOKitPageableMaps

• Those buffers can be shared with (or copy data out to) user-space process.

size = 0x4000 bytes

• The best option is : IOGPU shared buffers.

shm 2shm 1 …

Grooming IOKitPageableMaps requirements:

• Shared memory FTW!

• IOGPU is reachable from the default app sandbox.

shm n



Leak ‘MUTK’ Section Mapping Address

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n…

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Allocate MAX_SHMEMS ( =0x3000) shared memory objects.

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n

WeightBuf kernel exploit

…

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Allocate MAX_SHMEMS ( =0x3000) shared memory objects.

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n

WeightBuf kernel exploit

• Shared memory object size = 0x4000.

size = 0x4000 bytessize = 0x4000 bytes

…

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Allocate MAX_SHMEMS ( =0x3000) shared memory objects.

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n

• Shared memory object size = 0x4000.

size = 0x4000 bytessize = 0x4000 bytes

…

• Map shared memory objects to the kernel via s_submit_command_buffers().

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Allocate MAX_SHMEMS ( =0x3000) shared memory objects

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n

• Shared memory object size = 0x4000

size = 0x4000 bytessize = 0x4000 bytes

…

• Map shared memory objects to the kernel via s_submit_command_buffers() 

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Allocate MAX_SHMEMS ( =0x3000) shared memory objects

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n

• Shared memory object size = 0x4000

size = 0x4000 bytessize = 0x4000 bytes

…

• Map shared memory objects to the kernel via s_submit_command_buffers() 

• Use Near Writes to copy H11ANESharedMemorySurfaceParamsStruct to one of our shared 
buffers

- 0x280000

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• Allocate MAX_SHMEMS ( =0x3000) shared memory objects

MUTK

IOKitPageableMaps

size = 0x4000 bytes

shm 2shm 1 shm n

• Shared memory object size = 0x4000

size = 0x4000 bytessize = 0x4000 bytes

…

• Map shared memory objects to the kernel via s_submit_command_buffers() 

• Use Near Writes to copy H11ANESharedMemorySurfaceParamsStruct to one of our shared 
buffers

- 0x280000

• Write H11ANESharedMemorySurfaceParamsStruct at MUTK_kernel_address - 0x280000

Grooming IOKitPageableMaps requirements:



Leak ‘MUTK’ Section Mapping Address

• For full implementation see groom_pageable_maps() in the exploit source code.

• Scan all the shared buffers to find the scratched one using lookup_scratched_shmem().

Grooming IOKitPageableMaps



Leak ‘MUTK’ Section Mapping Address

Grooming IOKitPageableMaps

• If found, one of the shmem buffers holds H11ANESharedMemorySurfaceParamsStruct. 

• Scan all the shared buffers to find the scratched one using lookup_scratched_shmem().



• A kernel address from IOKitPageableMaps (MUTK buffer).

• IOSurface address from IOSurface_zone.

• We need to find an IOSurfaceClient address to perform the arbitrary write.

Leak ‘MUTK’ Section Mapping Address

H11ANESharedMemorySurfaceParamsStruct

What we have so far



Build an arbitrary kernel r/w primitive

To achieve kernel r/w, corrupt IOSurfaceClient->IOSurface location with a fake 
IOSurface. The attacker needs  the following:

• Leak IOSurfaceRoot location to bypass IOSurfaceRootUserClient::getSurfaceClient() 
check.

• Leak an IOSurfaceClient object location that’s created by the attacker.

• Write primitive to overwrite IOSurfaceClient->IOSurface is needed.

• A (Fake IOSurface) kernel pointer whose content is under the attacker’s control.



Leak an IOSurfaceClient object location



• An IOSurface address was leaked already but it doesn’t have an IOSurfaceClient 
object.

• The goal is to find an IOSurface object that’s owned by the attacker, thus has an 
IOSurfaceClient. 

Leak an IOSurfaceClient object location

Where & How to find an IOSurfaceClient object ?

• Can be found in IOSurfaceRootUserClient which created it.

• Can be found in IOSurface: in a queue that keeps track of IOSurfaceClient’s refs.



• An IOSurface address was leaked already but it doesn’t have an IOSurfaceClient 
object.

• The goal is to find an IOSurface object that’s owned by the attacker, thus has an 
IOSurfaceClient. 

Leak an IOSurfaceClient object location

Where & How to find an IOSurfaceClient object ?

• Can be found in IOSurfaceRootUserClient which created it.

• Can be found in IOSurface: in a queue that keeps track of IOSurfaceClient’s refs.

• Use ANECValidateMutableProcedureInfo() integer overflow to read 1 page from 
IOSurface_zone .



Read 1 page from IOSurface_zone 

• Round down the address of  IOSurface to get the page address.

• Leak 1-page of IOSurface_zone to user-space .

• The page must have at least one IOSurface created by us.

• Reading more than one page may result in a kernel panic.

Leak an IOSurfaceClient address

• weightSurface (aka ANECMutableProcedureInfo) address is required to achieve 
arbitrary read.

• Because weightSurface can be in IOKitPageableMaps, its location can be deduced from 
the leaked MUTK address.



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

IOSurface_zone

1 page size



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

IOSurface_zone

• 1 page contains ~15 IOSurface objects.

1 page size



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

IOSurface_zone

• 1 page contains ~15 IOSurface objects.

• 1 page may not necessarily have one of our IOSurface objects.

1 page size



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

IOSurface1

IOSurface_zone

• 1 page contains ~15 IOSurface objects.

• 1 page may not necessarily have one of our IOSurface objects.

• Spray IOSurface_zone with our IOSurface objects to increase the odds.

IOSurface 2 IOSurface 3 … IOSurface n

1 page size



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

IOSurface1

IOSurface_zone

• 1 page contains ~15 IOSurface objects.

• 1 page may not necessarily have one of our IOSurface objects.

• Spray IOSurface_zone with our IOSurface objects to increase the odds.

• Release some  IOSurface objects. 

IOSurface 2 …

1 page size

Freed Freed



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

MUTK IOSurfaceIOSurface1

IOSurface_zone

• 1 page contains ~15 IOSurface objects.

• 1 page may not necessarily have one of our IOSurface objects.

• Spray IOSurface_zone with our IOSurface objects to increase the odds.

• Release some  IOSurface objects. 

IOSurface 2 …

1 page size

Freed

• Allocate a programBuffer so MUTK IOSurface overlaps with one of the 
freed IOSurface objects.



Leak an IOSurfaceClient address
Read 1 page from IOSurface_zone: 

• IOSurface_zone_page  = trunc_page(aneMemSurface.p_IOSurface);

• Scan the whole page to find a matching IOSurfaceID.



Leak an IOSurfaceClient address

• The second object in the page dump is a potential IOSurface target.

Exploit output:



Build an arbitrary kernel r/w primitive

To achieve kernel r/w, corrupt IOSurfaceClient->IOSurface location a fake 
IOSurface. The attacker needs  the following:

• Leak IOSurfaceRoot location to bypass IOSurfaceRootUserClient::getSurfaceClient() 
check.

• Leak an IOSurfaceClient object location that’s created by the attacker.

• Write primitive to overwrite IOSurfaceClient->IOSurface is needed.

• A (Fake IOSurface) kernel pointer whose content is under the attacker’s control.



IOGPU Shared Buffers as a fake IOSurface object



IOGPU Shared Buffers as a fake IOSurface object

MUTK

Snippet from WeightBuf kernel exploit

size = 0x4000 bytes

shm 2shm 1 shm n

size = 0x4000 bytessize = 0x4000 bytes

…

For each shared buffer (shm) :



IOGPU Shared Buffers as a fake IOSurface object
• Use IOSurface::get_use_count() to identify the kernel r/w shm_id.

• If the returned value is 0x41410AAA, it means that 0xAAA is the corresponding shm_id.





• Kernel r/w exploits alone are not enough to fully hack iPhones 
nowadays.

• WeightBuf works across all devices: macOS, iOS and iPadOS.

WeightBuf Kernel Exploit

• The exploit reliability may differ from one device to another, some 
exploit tuning is required to increase the reliability for a particular 
device.

• WeightBuf demonstrates that despite the challenges posed on by 
current mitigations, memory corruption bugs can still be exploited.



Conclusion



Conclusion

• There are many excellent bugs out there just waiting to be found.

• Thanks to Apple SEAR for making the challenge super fun and more interesting than 
ever.

• This is not the end of iOS exploitation, you just need a high quality bugs to pwn it. When 
there’s a will there’s a way.

• iOS now is one of the hardest (if not the hardest) targets to hack.

• As a security researcher, learn to follow the nudges of your intuition.



Mohamed GHANNAM (@_simo36)

Thank You!

https://twitter.com/_simo36

