
Package Disaster
Diving Deep into macOS PackageKit and Discovering 15+

New SIP-Bypass Vulnerabilities
Mickey Jin (@patch1t) of Trend Micro

POC2022

https://twitter.com/patch1t?lang=en

About me
● Security Researcher from Trend Micro
● Malware Analyst
● Vulnerability Hunter
● 90+ CVEs from Apple in the past 2 years
● Reverse engineering and debugging enthusiast

@patch1t

https://www.trendmicro.com/
https://jhftss.github.io/cvelist/
https://twitter.com/patch1t?lang=en

Outline

1. Introduction to macOS SIP
2. PackageKit Internals
3. New Vulnerabilities & Exploitations (Demo)
4. Take Away

https://support.apple.com/en-us/HT204899

https://support.apple.com/en-us/HT204899

System Integrity Protection

● Also known as Rootless (Root is not enough to make some modifications)
● Protect the entire system from tampering:

○ Prevent modification of system files
○ Deny debugger from attaching to Apple-signed processes
○ Disable unsigned kexts loading
○ Restrict some Dtrace actions
○ …

● Default is enabled, can only be disabled in Recovery Mode (Reboot, ⌘+R)

File System Protection

● A special sandbox applied to the entire system
● Configuration: /System/Library/Sandbox/rootless.conf

What’s The Importance ?

● The cornerstone of many other security features.
○ e.g. TCC.db is SIP-protected, SIP-Bypass means Full TCC-Bypass

● The last line to protect the entire system from malware.
○ What if malware bypassed SIP ?

■ Unremovable payload -> make the malicious payload SIP-protected, Anti-Virus
products have no way to remove it.

■ Steal all your privacy
● Breaking one feature may break them all.

○ They are working together as a whole.
○ e.g. If you can attach a debugger to Apple-signed processes, then all the other SIP features

could also be bypassed.
○ Similarly, if you can bypass File System Protection, it is possible to get arbitrary kernel code

execution, and then bypass all the others.

The Special Entitlements

● Plist (XML) embedded in the executable’s code signature

● com.apple.rootless.install
○ Only signed with a few special system executables
○ Grant permission to modify system files for special purpose, such as updating the OS

● com.apple.rootless.install.heritable
○ Permission can be inherited by all of its child-processes

The Entitled List

Scanning all the executables with the special entitlements from the entire OS:

● /System/Library/CoreServices/Software Update.app/Contents/Resources/suhelperd
● /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/s

ystem_shove
● /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/d

eferred_install
● /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/s

ystem_installd
● /System/Library/PrivateFrameworks/ShoveService.framework/Versions/A/XPCServi

ces/SystemShoveService.xpc/Contents/MacOS/SystemShoveService
● …

Outline

1. Introduction to macOS SIP
2. PackageKit Internals

a. About PKG File
b. PKG Installation

3. New Vulnerabilities & Exploitations (Demo)
4. Take Away

About PKG File
XAR Archive

$ pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

$ pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

$ pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

$ pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

$ pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

An archive file (mostly in GZip format).
The decompressed payloads will be

shoved into the destionation volume.

$ pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

preinstall script will be executed
before shoving the payloads, it is
often used to do some preparation
before the installation.

postinstall script will be executed after
the shoving operation, it is usually
used to register some launch daemons.
Here it is a perl script, it will enumerate
all the scripts in the postinstall_actions
folder and spawn them one by one.

Scripts was also an archive,
here decompressed by pkgutil

PKG Installation

PackageKit.framework

● A private framework
● Main job: PKG Installation
● Bundled with two main daemons

○ installd: developer signed, not signed PKGs
○ system_installd: Apple-signed PKGs
○ Both run as root, share the same

implementation in the PackageKit.framework

$ codesign -dvv --entitlements -
/System/Library/PrivateFrameworks/PackageKit.framework/Resources/[system_]installd

system_installd (com.apple.system_installd)installd (com.apple.installd)

“main” function of (system_)installd

com.apple.(system_)installd

PKInstallDaemon: PKInstallService

@protocol PKInstallService <NSObject>
- (void)purgeableSpaceForOrphanedSandboxesOnVolume:(NSString *)arg1 reply:(void (^)(long long))arg2;
- (void)startPurgeOfSandboxesOnVolume:(NSString *)arg1 purgeAmountNeeded:(unsigned long long)arg2
systemSandboxes:(BOOL)arg3 reply:(void (^)(unsigned long long))arg4;
- (void)estimateOfPurgeableSpaceForSandboxesOnVolume:(NSString *)arg1 systemSandboxes:(BOOL)arg2 reply:(void
(^)(NSNumber *))arg3;
- (void)currentStageStatusOfInstallRequest:(PKInstallRequest *)arg1 calculatePurgeableSize:(BOOL)arg2 reply:(void
(^)(BOOL, NSNumber *))arg3;
- (void)registerAuthorizationFromInstallRequest:(PKInstallRequest *)arg1 reply:(void (^)(BOOL))arg2;
- (void)adoptToken:(NSString *)arg1 reply:(void (^)(NSError *, NSArray *))arg2;
- (void)tokenForCurrentCommitIgnoringBlockingClients:(BOOL)arg1 reply:(void (^)(NSString *))arg2;
- (void)displayNamesForToken:(NSString *)arg1 reply:(void (^)(NSArray *))arg2;
- (void)installStatusForToken:(NSString *)arg1 reply:(void (^)(NSDictionary *))arg2;

- (void)addToken:(NSString *)arg1 reply:(void (^)(NSError *, NSArray *))arg2;
- (void)tokenForInstallRequest:(PKInstallRequest *)arg1 reply:(void (^)(NSString *, NSError *))arg2;
@end

PKInstallServiceClient

@protocol PKInstallServiceClient <NSObject>

- (void)installDidEndForToken:(NSString *)arg1;
- (void)installDidBeginCommitForToken:(NSString *)arg1;
- (void)installDidBeginForToken:(NSString *)arg1;

@optional
- (void)installWillProceedForState:(int)arg1 withSandbox:(PKInstallSandbox *)arg2
forToken:(NSString *)arg3 completion:(void (^)(void))arg4;

@end

XPC Clients for PKG Installation

● /System/Library/CoreServices/Installer.app
○ GUI Interface: default open method for pkg files

● sudo /usr/sbin/installer -pkg /path/to/test.pkg -target /
○ Command Line Interface

● sudo /tmp/poc file://localhost/path/to/test.pkg#test.pkg
○ DIY a command line program according to the XPC interface
○ Make a crafted install request (PKInstallRequest *) for exploitation
○ Since macOS Monterey 12.4, it requires a new entitlement

“com.apple.private.system_installd.connection” for the privileged XPC connection as I suggested

My Simple Client

 NSXPCConnection *connection = [[NSXPCConnection alloc] initWithMachServiceName:@"com.apple.system_installd"
options:NSXPCConnectionPrivileged];
 connection.remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol(PKInstallService)];
 connection.exportedInterface = [NSXPCInterface interfaceWithProtocol:@protocol(PKInstallServiceClient)];
 connection.exportedObject = [[PKInstallClientDelegate alloc] init];
 [connection setInterruptionHandler:^{ NSLog(@"connection interrupted!"); }];
 [connection setInvalidationHandler:^{ NSLog(@"connection invalidated!"); }];
 [connection resume];

 id proxy = connection.remoteObjectProxy;
 PKInstallRequest *req = [PKInstallRequest requestWithPackages:pkgs destination:@"/"];
 __block NSString *token;
 __block dispatch_semaphore_t tokenGot = dispatch_semaphore_create(0);
 [proxy tokenForInstallRequest:req reply:^(NSString *t, NSError *error) { token = t; dispatch_semaphore_signal(tokenGot); }];
 dispatch_semaphore_wait(tokenGot, DISPATCH_TIME_FOREVER);
 [proxy addToken:token reply:^(NSError *error, NSArray *arr) { NSLog(@"error:%@", error); }];

❗
Installation

Clients

Installation Daemons (system_)installd

com.apple.installd

com.apple.system_installd

PKInstall
Request Apple-signed?

Check the
authorization
of Request

-[PKInstall
_installMain:]

Check the PKG
Signature
(trustLevel>=500?)

Check the
authorization
of Request

-[PKInstall
_installMain:]

Installation Flow Chart

InstallOperations

● 24 Operations for Installation (Potential attack
surfaces)

● Subclasses of PKInstallOperation
● Managed by class PKInstallOperationController
● Operation’s “main” method will be called from

method -[PKInstall _installMain:]

Outline

1. Introduction to macOS SIP
2. PackageKit Internals
3. New Vulnerabilities & Exploitations (Demo)

a. CVE-2022-32895
b. CVE-2022-22583
c. CVE-2022-32800
d. CVE-2022-26690
e. CVE-2022-XXX
f. CVE-2022-32786

4. Take Away

SIP
Bypass

CVE-2022-26688

CVE-2022-32895

Talk today

Maybe next
conference/blog

CVE-2022-32786

image credit: www.worldatlas.com

More…

CVE-2022-22583

CVE-2022-32800

CVE-2022-26690

CVE-2022-XXX

CVE-2022-26712

CVE-2022-26727

CVE-2022-32826

CVE-2022-22646 CVE-2022-22617

CVE-2022-32900

CVE-2022-32794
CVE-2022-22676

CVE-2022-32895
Make an old vulnerability

exploitable again!

Fixed in macOS Ventura 13.0

Recall an old vulnerability

● CVE-2019-8561
● A classic TOCTOU issue
● Privilege Escalation & SIP-Bypass
● Details talked at OBTS_v2 by Bradley
● I was curious about how Apple fixed it

Apple-signed Pkg

Pkg Signature
Check

Fake Pkg

Extract and Run
(pre|post)install
scripts inside

Time Of Check

Time Of Use

Check PASS
Replace

https://objectivebythesea.com/v2/talks/OBTS_v2_Bradley.pdf

Patch of CVE-2019-8561

Error: “xar_open_digest_verify: toc digest does not match the expected.”

1. Digest is passed from the
Installation Client

2. Cache the returned xar_t pointer
into its member variable

Patch of CVE-2019-8561

Error: “xar_open_digest_verify: toc digest does not match the expected.”

Check right before
extracting scripts? 🤔

1. Digest is passed from the
Installation Client

2. Cache the returned xar_t pointer
into its member variable

Double/Triple Fetch !

● xar_open_digest_verify is a safe API to open an untrusted PKG file
● open the untrusted PKG file directly is not safe
● A PKG file could be very large - Not suitable to read all its contents into

memory in a single fetch
○ In my opinion, the best solution could be to copy the PKG to a safe place before its

installation.
■ For Apple-signed PKGs, copy to a SIP-protected location
■ For other PKGs, copy to a root-owned location

○ Currently, it will read and extract the components on demand: Bom, Payload, Scripts

Double/Triple Fetch !

-[PKExtractInstallOperation _extractAllSpecifiersOnceAndReturnFailingSpecifier:andError:]

-[PKExtractInstallOperation _extractBomForPackageSpecifier:error:]

-[PKExtractInstallOperation _extractPayloadForPackageSpecifier:error:]

-[PKExtractInstallOperation _extractScriptsForPackageSpecifier:error:]

-[PKLeopardPackage scriptsExtractorWithDestination:error:]

-[PKPayloadCopier initWithArchivePath:offset:destination:]

open (“/path/to/untrusted.pkg”, 0, 0)

Simliar with
scriptsExtractor:

Double fetch inside

Triple fetch here

Fetch with safe API

Double/Triple Fetch !

-[PKPayloadCopier initWithArchivePath:offset:destination:] () {
 int fd = open("/path/to/untrusted.pkg", 0, 0);
 lseek(fd, scriptsOffsetInPkg, 0);
 [self->_bomCopier setValue:[NSNumber numberWithInt: fd] forKey:@"inputFD"];
}

-[PKPayloadCopier run] () {
 BOMCopierSetUserData(self->_bomCopier, self);
 // BOMCopierSetXXX(self->_bomCopier, ...);
 BOMCopierCopyWithOptions(self->_bomCopier, pkgPath=0, dstPath, self->_bomCopierOptions);
}

scriptsOffsetInPkg is a
fixed value in a PKG

Extract from the
untrusted inputFD

CVE-2022-32895: Exploit the old issue again

Prepare payload for a crafted pkg:
pkgutil --expand /Volumes/Pro\ Video\ Formats/ProVideoFormats.pkg /tmp/ProVideoFormats

rm -rf /tmp/ProVideoFormats/MXFPlugIns.pkg/Scripts/*

echo '#!/bin/bash' > /tmp/ProVideoFormats/MXFPlugIns.pkg/Scripts/postinstall

echo 'touch /Library/Apple/sip_bypass' >> /tmp/ProVideoFormats/MXFPlugIns.pkg/Scripts/postinstall

chmod +x /tmp/ProVideoFormats/MXFPlugIns.pkg/Scripts/postinstall

Rebuild the fake pkg, until the scriptsOffsetInPkg is equal to the original one:
while True:

 os.system('pkgutil --flatten /tmp/ProVideoFormats /tmp/ProVideoFormats.fake.pkg')

 f=open('/tmp/ProVideoFormats.fake.pkg', 'rb')

 f.seek(scriptsOffsetInPkg) # the offset value from the original PKG

 if f.read(4)=='\x1f\x8b\x08\x00': break

 f.close()

CVE-2022-32895: Exploit the old issue again

1. Make an install request by using the original Apple-signed PKG.
2. Right before the system_installd opens the PKG in the method

“initWithArchivePath:XXX”, replace it with my crafted PKG.
3. Restore with the original PKG after calling "BOMCopierCopyWithOptions" to

pass the possible verifications again later.
4. My payload scripts got extracted and will be executed with CS_INSTALLER

privilege later. (In a “SIP-Bypass Context”)

Patch of CVE-2022-32895

1. Get the expected checksum property of the PKG’s subpath (Scripts / payload)
via the trusted xar_t pointer (returned by xar_open_digest_verify).

2. Instead of reading from the inputFD directly, use an instance of the ObjC
class IASInputStream to read the inputStream:
a. [self->_bomCopier setValue: inStream forKey: @"inputStream"];
b. [self->_bomCopier removeObjectForKey: @"inputFD"];

3. During the extraction (BOMCopierCopyWithOptions), the IASInputStream will
update the digest of the inputStream at the same time.

4. After the extraction, check whether the inputStream's real checksum is equal
to the expected one.
a. If yes, continue the installation.
b. Otherwise, abort the whole process.

One more issue with the payloadExtractor ?

1.Double fetch inside

2. externalRoot path does
not seem to be trusted !!!

Find an Apple-signed PKG
with an externalRoot path ???

CVE-2022-22583
Peek of PKInstallSandbox

Fixed in macOS 12.2

Process Monitor

/tmp/PKInstallSandbox.l57ygT/Scripts/com.apple.pkg.MXFPlugIns.yJpaxP/preinstall

/tmp/PKInstallSandbox.l57ygT/Scripts/com.apple.pkg.MXFPlugIns.yJpaxP/postinstall

The scripts spawned by
system_installd, are executed

in a SIP-Bypass Context

Process Monitor

Who created this?
SIP-protected?

/tmp/PKInstallSandbox.l57ygT/Scripts/com.apple.pkg.MXFPlugIns.yJpaxP/preinstall

/tmp/PKInstallSandbox.l57ygT/Scripts/com.apple.pkg.MXFPlugIns.yJpaxP/postinstall

The scripts spawned by
system_installd, are executed

in a SIP-Bypass Context

-[PKInstallSandbox prepareForCommitReturningError:]

/tmp/PKInstallSandbox.XXXXXX
is not restricted/SIP-protected !

Extracted Scripts
and tmp are
restricted. Cannot
be replaced
directly. 🙁

Exploit 1 (Credit to Perception Point)

1. Create a virtual image file and mount it onto “/private/tmp”.
2. Install an Apple-signed package with post-install scripts.
3. Wait for the installer to finish the extraction of the scripts directory, and gather

the random parts of the extracted path.
4. Unmount the image file, thus reverting to the contents of “/private/tmp” before

the extraction.
5. Create the scripts directory by ourselves (with the random path we gathered

earlier) and deposit there whatever scripts we want.

https://perception-point.io/research-insights/technical-analysis-cve-2022-22583/

https://perception-point.io/research-insights/technical-analysis-cve-2022-22583/

This vulnerability is very dependent on timing – the exploit must succeed in swapping the script in the window of
opportunity. However, the exploit is quite reliable and we noticed that it usually takes one or two tries to succeed

Exploit 2

1. Monitor the creation of the directory /tmp/PKInstallSandbox.XXXXXX, replace
it with a symlink to another location /tmp/fakebox, in order to redirect the
restricted Scripts to the /tmp/fakebox.

2. Once we’ve located the Scripts inside the /tmp/fakebox, remove the symlink
and recreate the same directory /tmp/PKInstallSandbox.XXXXXX , then place
my payload script in the directory
/tmp/PKInstallSandbox.XXXXXX/Scripts/pkgid.XXXXXX/

3. Wait for my payload script to execute.

POC & Demo

https://github.com/jhftss/POC/tree/main/CVE-2022-22583

https://github.com/jhftss/POC/tree/main/CVE-2022-22583

Patch of CVE-2022-22583
The root cause is the confusion of operations between installd and system_installd. Now it makes the distinction:

CVE-2022-32800
Dive into PKInstallSandbox

Fixed in macOS 12.5

Sandbox Repository

Returned (and Created) by the function -[PKInstallSandboxManager
_sandboxRepositoryForDestination:forSystemSoftware:create:error:]:

1. Installation target is the root volume “/”:
a. For Apple-signed PKGs :

/Library/Apple/System/Library/InstallerSandboxes/.PKInstallSandboxManager-SystemSoftware
b. For other PKGs : /Library/InstallerSandboxes/.PKInstallSandboxManager

2. Installation target is not the root volume:
a. For Apple-signed PKGs : $targetVolume/.PKInstallSandboxManager-SystemSoftware
b. For other PKGs : $targetVolume/.PKInstallSandboxManager

Sandbox Path

● Used to store files (Scripts, payload, tmp, ...) during the installation
● Inside the Sandbox Repository
● Created by the method [PKInstallSandboxManager

addSandboxPathForDestination:forSystemSoftware:]_block_invoke
● 4 kinds of Sandbox Paths:

○ UUID.sandbox : the first created state
○ UUID.activeSandbox : activated state, in use
○ UUID.trashedSandbox : deactivated state, to be trashed
○ UUID.orphanedSandbox : If disk space is not enough, do some cleanup

PKInstallSandbox
● An Objc Class for abstraction and

encapsulation
● Initialized from the sandbox path

and an install request
● Serializable (NSSecureCoding)

○ Save or serialize an instance into a file named
SandboxState inside the sandbox path

○ An instance could also be restored or
deserialized from the SandboxState file

@interface PKInstallSandbox : NSObject
<NSSecureCoding>
{
@public
 NSString *_sandboxPath;
 PKInstallRequest *_installRequest;
 NSString *_scriptsPath;
 NSString *_temporaryPath;
 NSNumber *_stagedSize;
 NSDate *_stageDate;
 NSMutableDictionary *_scriptDirsByPackageSpecifier;
 NSMutableDictionary *_bomPathsByPackageSpecifier;
 NSMutableArray *_cleanupPaths;
 NSDictionary *_scriptsAttributes;
 NSDictionary *_temporaryAttributes;
 NSSet
*_previousPackageIdentifiersSharingGroupsWithSandbox;
 long long _relevance;
 BOOL _safeToReset;
}
+ (BOOL)supportsSecureCoding;
- (id)initWithCoder:(id)arg1;
- (id)initWithSandboxPath:(id)arg1 installRequest:(id)arg2
error:(id *)arg3;
@end

-[PKInstallSandboxManager sandboxForRequest:req]

Sandbox
Repository

UUID(1).sandbox/SandboxState
…

UUID(N).sandbox/SandboxState

UUID(1).activeSandbox/SandboxState
…

UUID(N).activeSandbox/SandboxState

-[PKInstallSandboxManager _sandboxAtPath:matchingRequest:forUse:]

[NSKeyedUnarchiver decodeObjectOfClass:[PKInstallSandbox
class] forKey:NSKeyedArchiveRootObjectKey]

-[PKInstallRequest _isDeeplyEqualToRequest:req]

-[PKInstallSandboxManager _activateSandboxAtPath:error:]

-[PKInstallSandboxManager _addSandboxPathForDestination:...]

-[PKInstallSandbox initWithSandboxPath:installRequest:req error:]
UUID(NEW).sandbox

Step 2. Scan and Restore from the
existing activeSandbox

Step 3. Nothing found, Create a new one

Step 1. Scan and Restore from the
existing sandbox

CVE-2022-32800: PKInstallSandbox Object Hijack

● The SandboxState file is stored in the Sandbox Path, which is inside the
Sandbox Repository

● In a normal scenario, the Sandbox Repository is restricted for Apple-signed
PKGs

● However, if the installation destination is a DMG volume, the Sandbox
Repository is not restricted/trusted at all. The same is true for the
SandboxState file.

○ Make a crafted SandboxState file to hijack the new PKInstallSandbox object during the
deserialization process

○ All the member variables/instances of PKInstallSandbox are controllable now!
○ There are many different ways to exploit the issue.

■ e.g. The class member _cleanupPaths can give a primitive to remove arbitrary
SIP-protected paths.

POC & Demo

https://github.com/jhftss/POC/tree/main/CVE-2022-32800

https://youtu.be/rN930wlKg90

https://github.com/jhftss/POC/tree/main/CVE-2022-32800
https://youtu.be/rN930wlKg90

Patch of CVE-2022-32800

For Apple-signed
PKGs, the
SandboxState file
needs to be
trusted/restricted

CVE-2022-26690
Make an old issue exploitable

again!

Fixed in macOS 12.3

Recall an old exploit chain

● Check the vulnerability 2 from the awesome writeup by Ilias Morad (aka
A2nkF), also post on Objective-see

● The bash script in the postinstall_actions will be executed in a SIP-Bypass
context. Because it is from an Apple-signed PKG and spawned by
system_installd, which has the special entitlement
com.apple.rootless.install.heritable

● $3 is the specified install destination volume path (attacker-controllable)
● I was curious about how Apple fixed the issue

https://a2nkf.github.io/unauthd_Logic_bugs_FTW/
https://twitter.com/A2nkF_
https://objective-see.org/blog/blog_0x4D.html

Patch of the old issue

1. From the PKG side, remove $3, and use the hardcoded path:

2. Add a new XPC service, named package_script_service.xpc
a. Run package scripts (preinstall, postinstall) with root privilege
b. However, without the SIP-Bypass privilege (spawned by launchd, not system_installd)
c. If the install destination volume is not equal to the root volume “/”, it will use the XPC service to

run the package scripts in a safe and isolated environment.

Patch of the old issue

Bypass the check here

If yes, spawn directly; otherwise, use the XPC service to spawn

CVE-2022-26690: Bypass the volume check

● The key point is the volume path check at line 81.
● The destination volume path returned at line 80 is an arbitrary DMG mount

volume path I specified from the installer command line.
● So, what will happen if I eject the DMG volume immediately before the check ?

○ It will return “/” at line 80 and bypass the check at line 81 as expected 😎

CVE-2022-26690: Write the exploitation

CVE-2022-26690: Write the exploitation

CVE-2022-26690: Write the exploitation

● It should have worked. However, it failed 🙁
○ Because shell script is too slow, it always loses the race condition.

● Rewrite the logic in the (Obj)C language, then it works 😉
○ Source code: https://github.com/jhftss/POC/tree/main/CVE-2022-26690

● Demo: https://youtu.be/h69DkDFDws0

https://github.com/jhftss/POC/tree/main/CVE-2022-26690
https://youtu.be/h69DkDFDws0

Patch of CVE-2022-26690

Check whether the scripts directory is restricted/trusted. If the script to be
executed is not trusted, then use the isolated XPC service to launch it.

● In a normal scenario, the scripts directory is restricted. (In “/Library/Apple/”)
● However, when installing to a mounted DMG volume, the scripts directory is

not restricted, even though it was created by API rootless_mkdir_restricted.
● If I eject the DMG volume, the sandbox repository will disappear along with

the scripts directory.

CVE-2022-XXX
Bypass the patch again!

Fixed in macOS Ventura 13.0

CVE-2022-XXX: Bypass the patch again

1. Create a DMG file and mount it to the directory /tmp/.exploit
2. Install an Apple-signed PKG onto the volume /tmp/.exploit
3. In the function -[PKInstallSandboxManager

_sandboxRepositoryForDestination:forSystemSoftware:create:error:], once it creates and
returns the path /tmp/.exploit/.PKInstallSandboxManager-SystemSoftware (Inside the DMG
volume) as its sandbox repository, I can eject the DMG volume immediately, and then
create the sandbox repository on the root volume

4. Next, it will create the scripts directory inside the sandbox repository by using the API
rootless_mkdir_restricted

5. The scripts directory is restricted and the patch is bypassed now. It will spawn the trusted
scripts directly rather than resort to the isolated XPC service.

6. The trusted scripts can’t be modified directly, but we can mount another payload dmg to
/tmp/.exploit, in order to overlap the restricted scripts directory.

Patch of CVE-2022-XXX

Move the logic into a function named _systemTrustedAndOnVolumeAtPath, and set
the return value to a member variable: PKInstallSandbox._trustedSystemSandbox

Patch of CVE-2022-XXX

Move the logic into a function named _systemTrustedAndOnVolumeAtPath, and set
the return value to a member variable: PKInstallSandbox._trustedSystemSandbox

Internally call the function
_systemTrustedAndOnVolumeAtPath

Patch of CVE-2022-XXX
Enumerate the path components of a
given path:

● every path component must have
the flag SF_NOUNLINK or
SF_RESTRICTED (Make sure the
component can’t be mountable)

● If it is a symlink, it will call the
function recursively

CVE-2022-32786
Bypass via the

environment variable

Fixed in macOS 12.5

CVE-2022-32786

Exploit of CVE-2022-32786

1. Set the environment variable for the daemon system_installd :

2. Prepare a DMG volume, install an Apple-signed PKG to the untrusted DMG volume
3. Modify the postinstall script directly from the DMG volume, which will be spawned

directly by system_installd and hence executed in a SIP-Bypass context

POC: https://github.com/jhftss/POC/tree/main/CVE-2022-32786

Demo: https://youtu.be/LMgHNXfTiN4

https://github.com/jhftss/POC/tree/main/CVE-2022-32786
https://youtu.be/LMgHNXfTiN4

Patch of CVE-2022-32786

Outline

1. Introduction to macOS SIP
2. PackageKit Internals
3. New Vulnerabilities & Exploitations (Demo)
4. Take Away

a. Summary
b. My thoughts
c. Future Plan (What’s More)
d. References

Summary

● What’s macOS SIP and the impact of SIP-bypass
● PKG file structure and how does PKG get installed by the system
● PackageKit internals and attack surfaces
● Some SIP-Bypass vulnerability details
● Exploitations are also public: https://github.com/jhftss/POC

https://github.com/jhftss/POC

My thoughts

● SIP-protected = restricted = trusted
● The biggest issue is that the PackageKit developers often forget the security

boundary between installd and system_installd
○ They put many install operations into the same implementation in the PackageKit.framework
○ There could still be a lot of bugs stemming from this

● Installing an Apple-signed PKG into a DMG volume is not trusted by design
○ It could be safer if the installation task was assigned to installd rather than system_installd

● Each child process of system_installd must be handled with care.
○ Process monitoring is a good way to hunt for SIP-Bypass vulnerabilities.

Future Plan (What’s More)

● There are still many interesting logic vulnerabilities that I didn’t talk about
today.

○ e.g., attack the PackageKit framework via the XPC interfaces...
○ Time is limited. Maybe I will share more at my next conference or blog post.

● How did I get arbitrary kernel code execution via the SIP-Bypass primitive ?
○ Stay tuned

References

● https://support.apple.com/en-us/HT204899
● https://objectivebythesea.org/v2/talks/OBTS_v2_Bradley.pdf
● https://objective-see.org/blog/blog_0x4D.html
● https://a2nkf.github.io/unauthd_Logic_bugs_FTW/
● https://perception-point.io/research-insights/technical-analysis-cve-2022-22583/
● https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Twe

etable/

https://support.apple.com/en-us/HT204899
https://objectivebythesea.org/v2/talks/OBTS_v2_Bradley.pdf
https://objective-see.org/blog/blog_0x4D.html
https://a2nkf.github.io/unauthd_Logic_bugs_FTW/
https://perception-point.io/research-insights/technical-analysis-cve-2022-22583/
https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Tweetable/
https://jhftss.github.io/CVE-2022-26712-The-POC-For-SIP-Bypass-Is-Even-Tweetable/

Thanks !
Mickey Jin (@patch1t)

Questions? Contact me on Twitter

POC2022

https://www.twitter.com/patch1t

