How unsafe {} is Rust?

Matt Suiche, OPCDE (@OPCDE)

W

Whoami

e @msuiche on Twitter

e Founder of Hackito Ergo Sum (Paris), No Such Con (Paris), OPCDE
(Dubai & Nairobi) conferences

* CloudVolumes (Vmware in 2014), Comae (Magnet Forensics in
2022).

* Memory acquisition & analysis research
* Windows ARM64 exploit development research

* Web3 security

Rust vs Go

e Rust is memory safe, and ensures memory safety at the time of
compilation.

* Go is not memory safe and sometimes data races can lead to invalid
values which may lead to memory corruption.

* Although, both Go and Rust prevent memory leaks by design. Go relies
on its automated garbage collector.
* Rust ownership and borrowing are pretty awesome too.

* Rust allows multiple immutable references but only a single changeable
reference at a time.

Rust vs Carbon

e Carbon is an experimental successor to C++

» Safer fundamentals, and an incremental path towards a memory-safe
subset. P

Rust

Most beloved programming language for 6 years in a row

Stack Overflow Developer Survey

One language for all?

user-mode kernel drivers Firmwares Web Applications Web3 smart contracts
applications PP (Solana, NEAR, etc.)

A 4

Many projects also consider Rust as a viable long-term alternative to C/C++

What type of bugs? (list non-exhaustive)

e panicl() e unsafe{} e can lead to profit e rogue

in the case of crates/github
smart-contracts
repo

W

5 Categories (Neodyme)

e Missing ownership check
: e Missing si heck
Smart-contract pitfalls BOENEL T
e Solana account confusions
(SOla na) e Arbitrary signed program invocation
e Integer overflow & underflow

Example: Soteria

W

v ‘3 24 WEEE programs/jet/src/state/reserve.rs d;

. EQ -195,16 +195,16 @R impl Reserve {

195 195 pub fn deposit(&mut self, token_amount: ué4, note_amount: ué4) {
196 196 let state = self.state_mut().get_stale_mut();
197 197
198 - state.total_deposits += token_amount;
199 - state.total_deposit_notes += note_amount;

O8N -+ state.total_deposits = state.total_deposits.checked_add(token_amount).unwrap();

IO state.total_deposit_notes = state.total_deposit_notes.checked_add(note_amount).unwrap();
200 200 }
201 201
202 202 /// Record an amount of tokens withdrawn from the reserve
203 203 pub fn withdraw(&mut self, token_amount: ué64, note_amount: ué4) {
204 204 let state = self.state_mut().get_stale_mut();
205 205
206 - state.total_deposits —= token_amount;
207 - state.total_deposit_notes —= note_amount;

206 + state.total_deposits = state.total_deposits.checked_sub(token_amount).unwrap();

207 + state.total_deposit_notes = state.total_deposit_notes.checked_sub(note_amount).unwrap();
208 208 }

Jet Protocol (October 2021)

Integer overflow/underflow

Unsafety (As per documentation)

* Unsafe operations are those that can potentially violate the memory-
safety following guarantees of Rust's static semantics.
* The language level features cannot be used in the safe subset of Rust:
* Dereferencing a raw pointer.
* Reading or writing a mutable or external static variable.
e Accessing a field of a union, other than to assign to it.
 Calling an unsafe function (including an intrinsic or foreign function).
* Implementing an unsafe trait.

https://doc.rust-lang.org/reference/types/pointer.html
https://doc.rust-lang.org/reference/items/static-items.html
https://doc.rust-lang.org/reference/items/external-blocks.html
https://doc.rust-lang.org/reference/items/unions.html
https://doc.rust-lang.org/reference/items/traits.html

@ Petr Benes

official rust wdk when

' Steve Eckels
@ °

Rust isn't ready! What needs to change:

*MS makes native rust winapi bindings. For kernel too!
* MS supports DDK + rustc together

* Rust adds anonymous unions and structures

* Disabling unwinding w/ no_std needs to be easier (i.e.

actually work)
* Stack usage limit flags!!

“8¥ Mark Russinovich € @mar|

Speaking of languages, it's time to halt starting any new projects in C/C++ and
use Rust for those scenarios where a non-GC language is required. For the sake
of security and reliability. the industry should declare those languages as
deprecated.

Supply Chain Attacks

* Non-Official Rust WDK
* High risk of potential supply chain abuse
* Main branch: https://github.com/retep998/winapi-rs
 ARM®64: https://github.com/msuiche/winapi-rs

e Reserved crate names
e https://users.rust-lang.org/t/should-people-be-allowed-to-reserve-crate-names/8360

* CrateDepression

* SentinellLabs has investigated a supply-chain attack against the Rust development
community that we refer to as ‘CrateDepression’.

e https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-
cloud-ci-pipelines-with-go-malware/

https://github.com/retep998/winapi-rs
https://github.com/msuiche/winapi-rs
https://users.rust-lang.org/t/should-people-be-allowed-to-reserve-crate-names/8360
https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/

Memory Safety (e.g. CVE-2019-18960)

e CVE-2019-18960 in Aws Firecracker.
Amazon VM monitor.

* Write up by Valentina Palmiotti,
@chompiel337

* Guard page at the end of signal
stacks (#69969)

pub fn get host address(&self, guest_addr: GuestAddress) -> Result<*const u8> {
self.do_in region(guest_addr, 1, |mapping, offset| {

(unsafe { mapping.as_ptr().add(offset) } as *const u8)
)
}

A memory region base address and the offset of the guest address from the base is calculated in
and the addition of the two is returned as the resulting pointer. On line 5 in the
code snippet above, there is an unsafe block. In Rust, a block of code can be prefixed with the
unsafe keyword to permit operations such as dereferencing a raw pointer, reading or writing to a
mutable static variable, accessing a field of a union (other than to assign it), or calling an unsafe
function . In the code snippet above, the comment states that the operation in the unsafe

block is safe to allow because do in region checks that the offset is in bounds. Let’s take a look:

unsafe user-mode code (raw pointers)

* “as ptr()” and “as *const” references.
e Raw, unsafe pointers, *const T, and *mut T.
* Direct old school pointer manipulation.

let image_path = CString::new("ImagePath").unwrap();
1f RegSetValueExA(key_handle,
image_path.as_ptr(),

0,
REG_SZ,
nt_driver_path.as_ptr() as =xconst u8,
path_length) == 0 {
return Some(GetLastError());

unsafe kernel-mode code

pub fn get_physical_memory_ranges() — Result<Vec<PhysicalMemoryRange>, NTSTATUS> {
unsafe {
let mut buf = MmGetPhysicalMemoryRanges() ;

if buf.is_null() {

return Err(STATUS_ACCESS_DENIED);
let mut ranges = Vec::new();
Tloop {

if (#buf).number_of_bytes = 0 {
break;

ranges.push(xbuf);
buf = buf.wrapping_add(1);

Ok (ranges)

Interesting projects

 Linux will support the Rust programming language in its kernel from
version 6.1.

 Caliptra
* An open-source root of trust with firmware written in Rust.
e https://azure.microsoft.com/en-us/blog/delivering-consistency-and-
transparency-for-cloud-hardware-security/

* An open sourced register-transfer level (RTL) code implementation of Caliptra
that can be synthesized into current SoC designs will be made available, along
with the cloud-designed firmware written entirely in Rust.

https://azure.microsoft.com/en-us/blog/delivering-consistency-and-transparency-for-cloud-hardware-security/

Stay safe

e https://rustsec.org
* Tools
e Advisory Database

e Soteria

* Tools
e cargo audit
e cargo deny
* cargo geiger
e cargo fuzz
* miri
e Other tools leveraging llvm (KLEE, rust-san, etc.)

https://rustsec.org/

Acknowledgments

e Patrick Ventuzelo (@Pat_Ventuzelo)
* Neodyme

* Matt Miller (@epakskape)

e Taha Karim (@lordx64)

e Jonas Lyk (@jonasLyk)

* Ryan McCrystal

* Not Mathias

e Stephan van Schaik

* \Valentina Palmiotti (@chompiel337)
e MemnOps (@memNOps)

e Petr Benes (@PetrBenes)

e Steve Eckels (@stevemkl14ebr)

Questions?

