
How unsafe {} is Rust?

Matt Suiche, OPCDE (@OPCDE)



Whoami

• @msuiche on Twitter
• Founder of Hackito Ergo Sum (Paris), No Such Con (Paris), OPCDE 

(Dubai & Nairobi) conferences
• CloudVolumes (Vmware in 2014), Comae (Magnet Forensics in 

2022).
• Memory acquisition & analysis research
• Windows ARM64 exploit development research
• Web3 security



Rust vs Go

• Rust is memory safe, and ensures memory safety at the time of 
compilation.
• Go is not memory safe and sometimes data races can lead to invalid 

values which may lead to memory corruption.
• Although, both Go and Rust prevent memory leaks by design. Go relies 

on its automated garbage collector.
• Rust ownership and borrowing are pretty awesome too.
• Rust allows multiple immutable references but only a single changeable 

reference at a time.



Rust vs Carbon

• Carbon is an experimental successor to C++
• Safer fundamentals, and an incremental path towards a memory-safe 

subset. 🚩



Rust

Many projects also consider Rust as a viable long-term alternative to C/C++

One language for all?

user-mode 
applications kernel drivers Firmwares Web Applications Web3 smart contracts 

(Solana, NEAR, etc.)

Most beloved programming language for 6 years in a row

Stack Overflow Developer Survey



What type of bugs? (list non-exhaustive)

DoS

• panic!()

Memory issues

• unsafe{}

Logic bugs

• can lead to profit 
in the case of 
smart-contracts

Supply chain

• rogue 
crates/github
repo



Smart-contract pitfalls
(Solana)

5 Categories (Neodyme)
• Missing ownership check
• Missing signer check
• Solana account confusions
• Arbitrary signed program invocation
• Integer overflow & underflow

Example: Soteria



Integer overflow/underflow
Jet Protocol (October 2021)



Unsafety (As per documentation)

• Unsafe operations are those that can potentially violate the memory-
safety following guarantees of Rust's static semantics.
• The language level features cannot be used in the safe subset of Rust:
• Dereferencing a raw pointer.
• Reading or writing a mutable or external static variable.
• Accessing a field of a union, other than to assign to it.
• Calling an unsafe function (including an intrinsic or foreign function).
• Implementing an unsafe trait.

https://doc.rust-lang.org/reference/types/pointer.html
https://doc.rust-lang.org/reference/items/static-items.html
https://doc.rust-lang.org/reference/items/external-blocks.html
https://doc.rust-lang.org/reference/items/unions.html
https://doc.rust-lang.org/reference/items/traits.html




Supply Chain Attacks

• Non-Official Rust WDK
• High risk of potential supply chain abuse
• Main branch: https://github.com/retep998/winapi-rs
• ARM64: https://github.com/msuiche/winapi-rs

• Reserved crate names
• https://users.rust-lang.org/t/should-people-be-allowed-to-reserve-crate-names/8360

• CrateDepression
• SentinelLabs has investigated a supply-chain attack against the Rust development 

community that we refer to as ‘CrateDepression’.
• https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-

cloud-ci-pipelines-with-go-malware/

https://github.com/retep998/winapi-rs
https://github.com/msuiche/winapi-rs
https://users.rust-lang.org/t/should-people-be-allowed-to-reserve-crate-names/8360
https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/


Memory Safety (e.g. CVE-2019-18960)

• CVE-2019-18960 in Aws Firecracker. 
Amazon VM monitor. 
• Write up by Valentina Palmiotti, 

@chompie1337
• Guard page at the end of signal 

stacks (#69969)



unsafe user-mode code (raw pointers)

• “as_ptr()” and “as *const” references.
• Raw, unsafe pointers, *const T, and *mut T.
• Direct old school pointer manipulation.



unsafe kernel-mode code



Interesting projects

• Linux will support the Rust programming language in its kernel from 
version 6.1.
• Caliptra
• An open-source root of trust with firmware written in Rust.
• https://azure.microsoft.com/en-us/blog/delivering-consistency-and-

transparency-for-cloud-hardware-security/
• An open sourced register-transfer level (RTL) code implementation of Caliptra

that can be synthesized into current SoC designs will be made available, along 
with the cloud-designed firmware written entirely in Rust. 

https://azure.microsoft.com/en-us/blog/delivering-consistency-and-transparency-for-cloud-hardware-security/


Stay safe

• https://rustsec.org
• Tools
• Advisory Database

• Soteria
• Tools
• cargo audit
• cargo deny
• cargo geiger
• cargo fuzz
• miri
• Other tools leveraging llvm (KLEE, rust-san, etc.) 

https://rustsec.org/


Acknowledgments

• Patrick Ventuzelo (@Pat_Ventuzelo)
• Neodyme
• Matt Miller (@epakskape)
• Taha Karim (@lordx64)
• Jonas Lyk (@jonasLyk)
• Ryan McCrystal
• Not Mathias
• Stephan van Schaik
• Valentina Palmiotti (@chompie1337)
• Memn0ps (@memN0ps)
• Petr Benes (@PetrBenes)
• Steve Eckels (@stevemk14ebr)



Questions?


