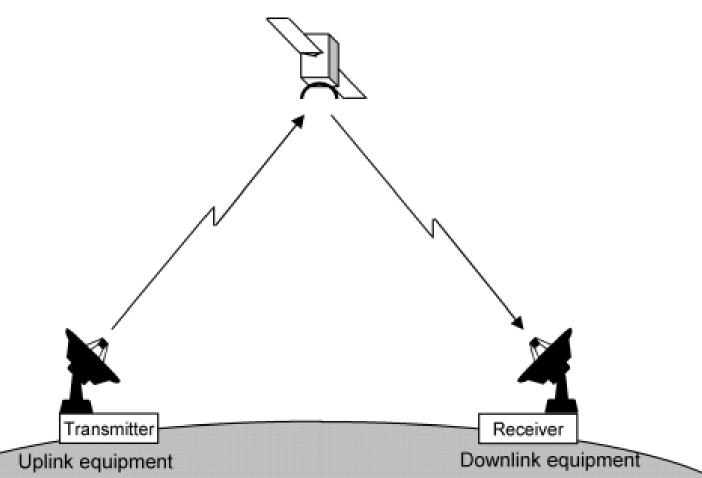
Threat From the Satellite

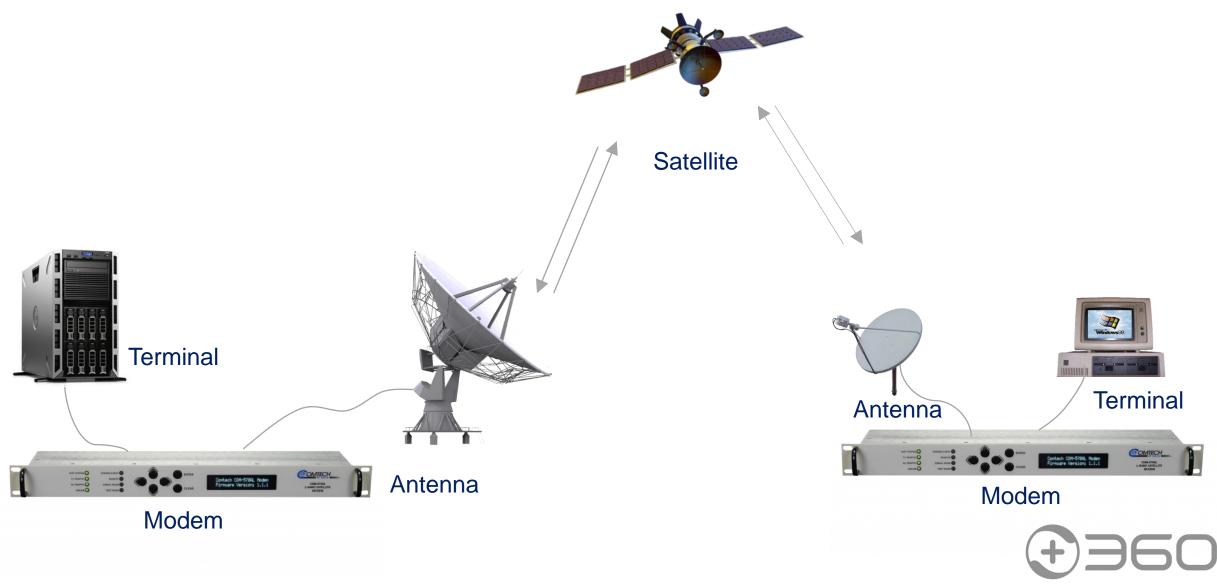
 \Rightarrow 360 PL

Jingli Hao


WHO ARE WE?

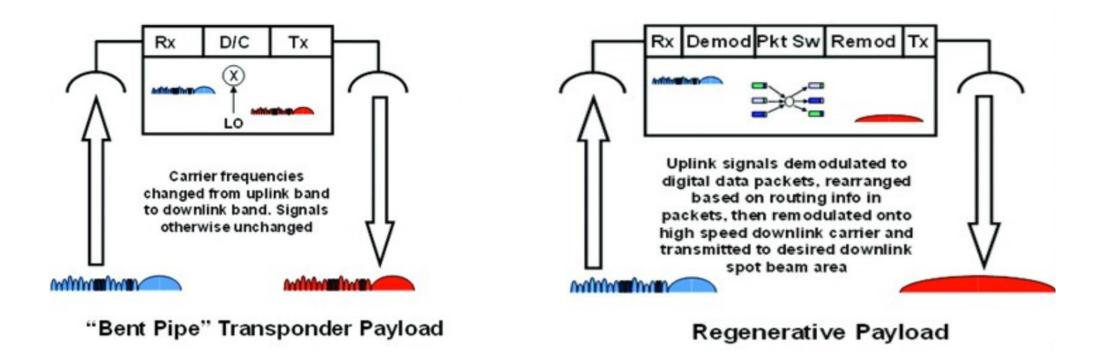
360 TECHNOLOGY Security Research Institute Unicorn Team

SATELLITE COMMUNICATION


Satellite Communication

Applications

Bank Telephone Radio Internet Television Military


COMMUNICATION COMPONENT

TRANSPONDERS

'Bent Pipe' Transponder Payload

Regenerative Payload

COMMUNICATION SATELLITE

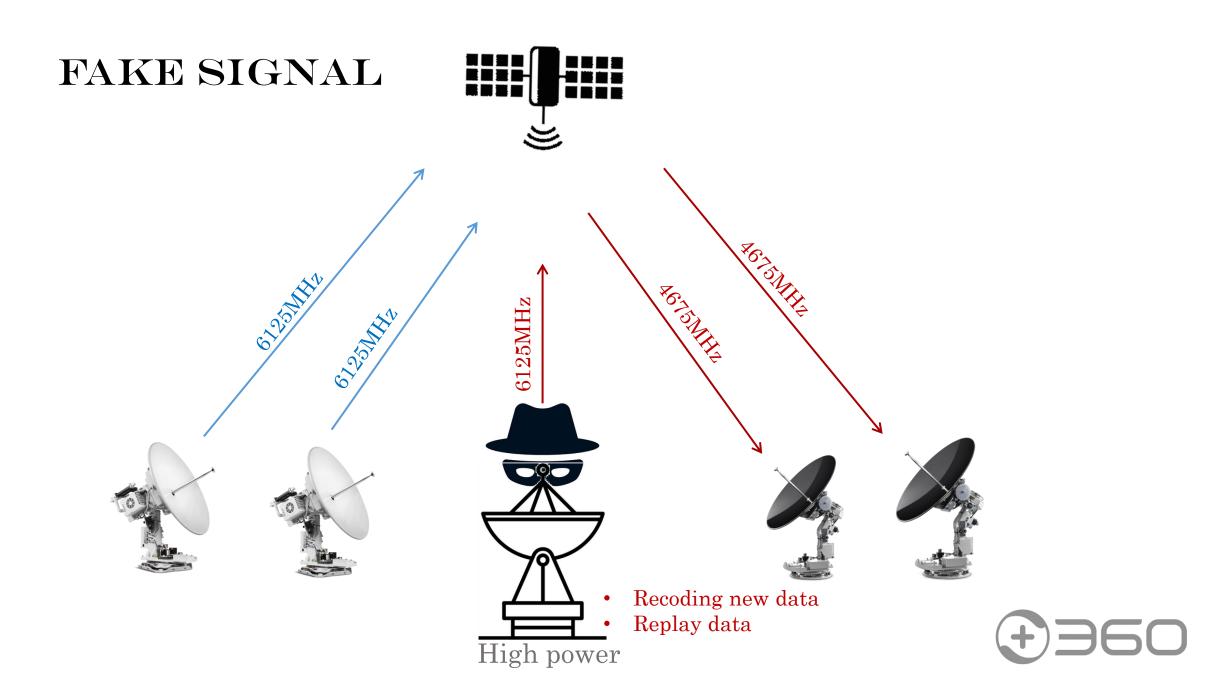
Satellite	Operator	Transponders
spaceway3	HNS	Regenerative Payload
wildblue	Wild-blue	Bent Pipe
Anik-F2/F3	Telesat	Bent Pipe
Viasat-1	Viasat	Bent Pipe
Inmarsat-5	Inmarsat	Bent Pipe
Hotbird-6	Eutelsat	Bent Pipe
Hylas	Avanti	Bent Pipe
Ka-sat	Viasat	Bent Pipe
03b	03b Networks	Bent Pipe
WINDS	JAXA	Regenerative Payload
iPSTAR-5	Thaicom	Bent Pipe
Yahsat1A/1B	Yahsat	Bent Pipe

BE CAREFUL! IF THERE IS A SPY!

Fake Signal

Tampering with data through High-power transmitter

Stealing Communication Links


Calculate the free link and use it.

Jamming

Calculate the uplink frequency and send high power jamming signal.

O

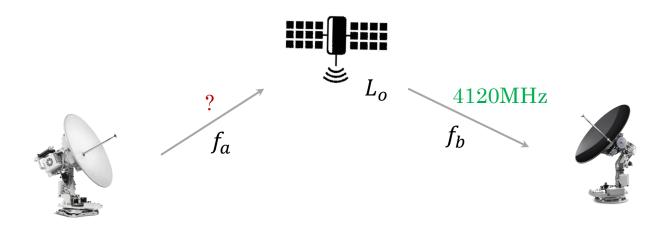
STEALING COMMUNICATION LINKS

C-band frequency

Uplink: 5.85GHz -- 6.75GHz Downlink: 3.4GHz -- 4.2GHz Local frequency: 2.225GHz

Ku-band frequency

Uplink: 14.0 GHz - 14.5 GHz

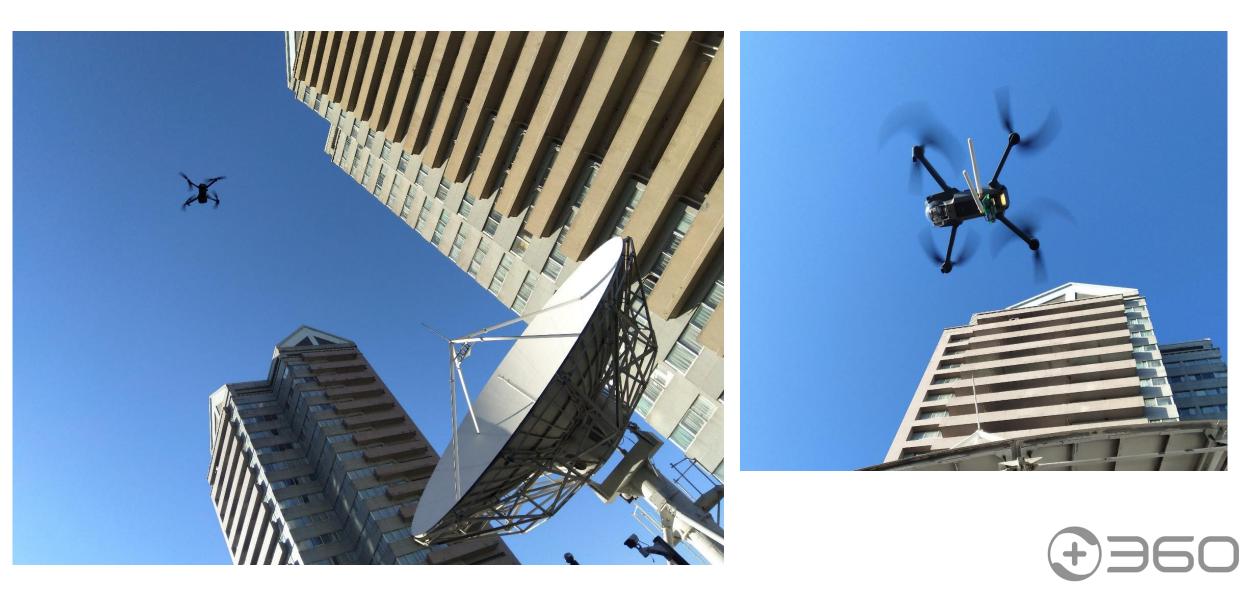

Downlink: 11.7GHz – 12.2GHz Local frequency:1.748GHz,1.750GHz

Ka-band frequency

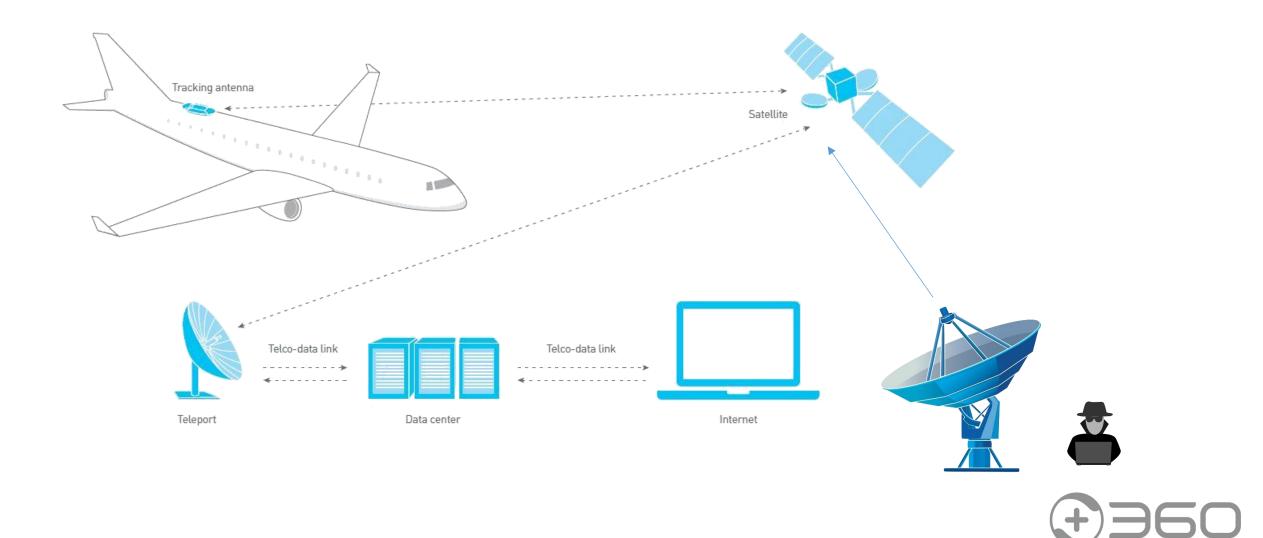
Uplink: 27.5GHz – 31.0GHz Downlink: 17.1GHz – 21.2GHz Local frequency:9.80GHz

CALCULATE THE UPLINK FREQUENCY

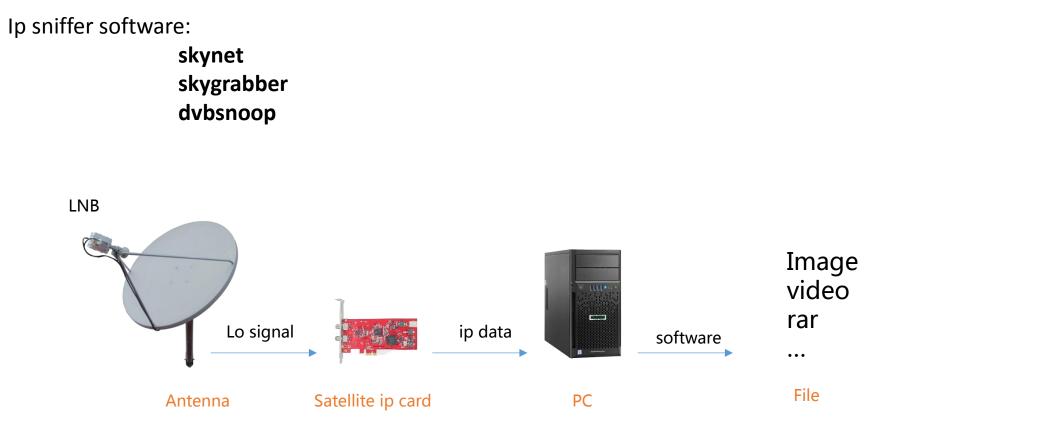
• If we know the downlink frequency. What's the uplink frequency?


$$f_b = f_a \pm L_o$$

f_a, uplink frequency; *f_b*, downlink frequency; *L_o*, local frquency


 $f_b = 4120Mhz \implies C - band frequeny \implies L_o = 2225MHz \implies f_a = 4120 + 2225 = 6345Mhz$

OPERATIONAL USE CASES



OPERATIONAL USE CASES

插入图片、视频、压缩包的二进制帧头

IN 2030, ALL THE 'BENT PIP' TRANSPONDERS DISAPPEAR.

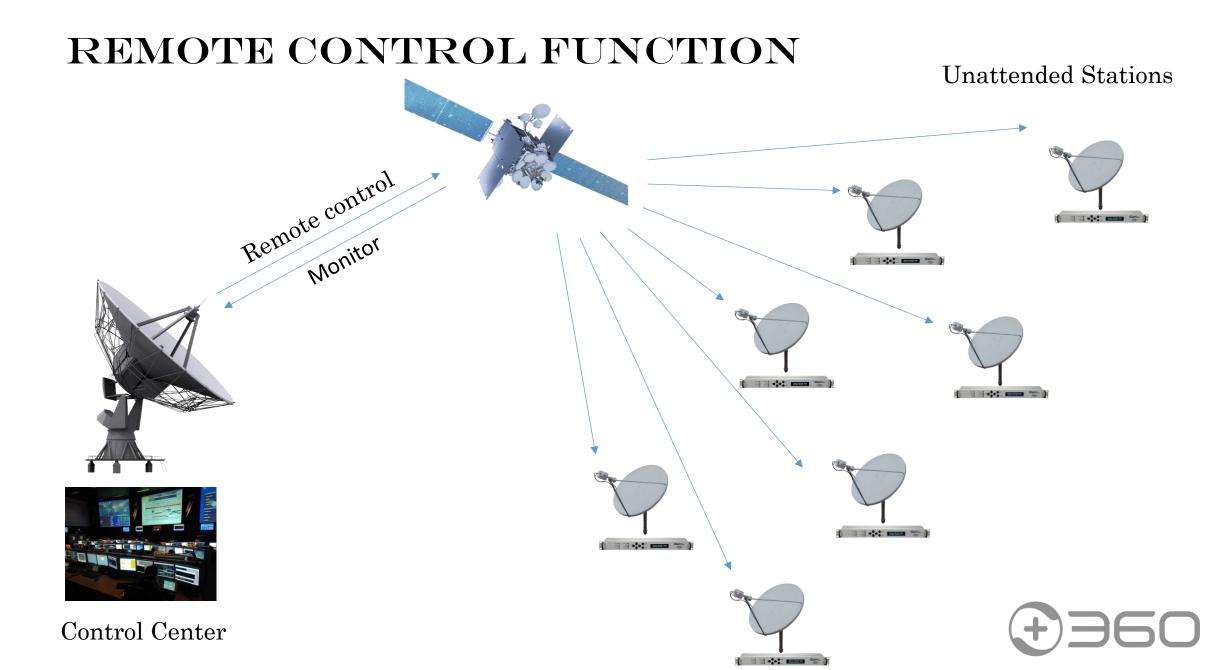
WILL THESE THREATS DISAPPEAR TOGETHER?

WHY CAN THESE ATTACKS SUCCEED?

IT MUST BE SATELLITE MODEMS.

SATELLITE MODEMS

Comtech EF Data ORBCOMM ViaSat **Gilat Satellite Networks** Novelsat Newtec **Datum Systems Teledyne Paradise Datacom Hughes Network Systems Advantech Wireless WORK Microwave** Ayecka Communication Systems **Amplus Communication**


SATELLITE MODEM

Data are transferred to a modem from data terminal equipment (e.g. a computer). In most cases frequency has to be converted using an upconverter before amplification and transmission.

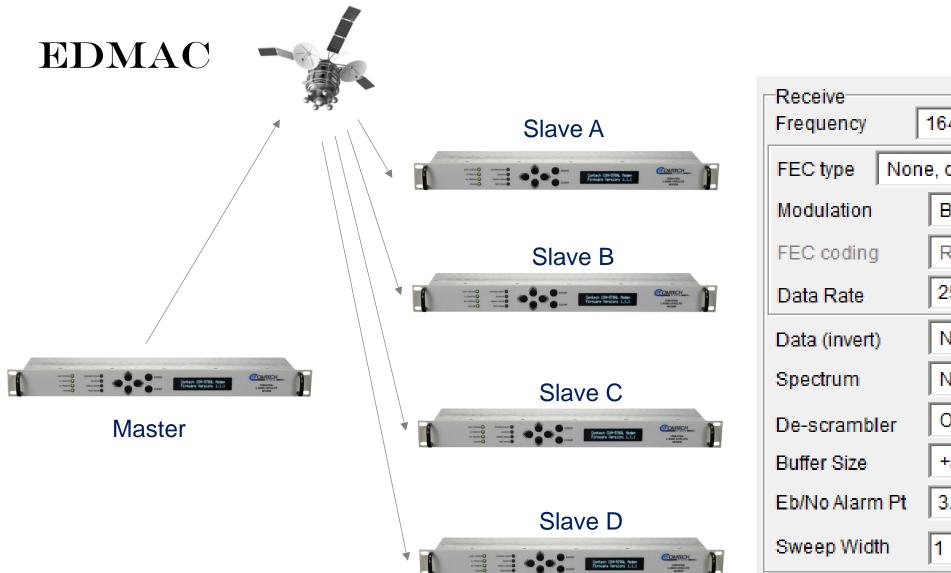
Similarly, a signal received from a satellite is firstly downconverted (this is done by a Low-noise block converter - LNB), then demodulated by a modern, and at last handled by data terminal equipment.

EDMAC OF COMTECH

Our EDMAC capability permits the users to access the M&C features of distant-end modems in a satellite link. This is accomplished by adding extra information to the user data in a manner that is completely transparent to the users.

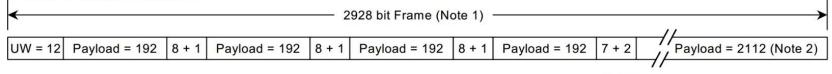
On the transmit side, the user data is split into frames and 48 bits of overhead is added to each frame. At the start of each frame a 12 bit synchronization word is added. This allows the demodulator to find and lock to the start of frame. At regular intervals throughout the frame, additional data bytes and flag bits are added (a further 36 bits in total). It is these additional bytes that carry the M&C commands and response.

On the receive side, when the demodulator locks to the incoming carrier, it goes through the additional step of searching for, and locking to the synchronization word. This uniquely identifies the start of frame, and permits the extraction of the overhead bytes and flag bits at the correct position within the frame. In addition, the start of frame permits the de-scrambler to correctly recover the data. The user's data is extracted, and sent through additional processing, in the normal manner. The extracted overhead bytes are examined to determine if they contain valid M&C bytes.


EMBEDDED DISTANT-END MONITOR AND CONTROL (EDMAC)

Statil of Modem 1, Distant end, link: 11111111111 CDM-570L Configuration Transmit Receive No lock-out -1625.0000 MHZ 1645.0000 MHz Frequency Frequency Unit EIA-232 Interface • FEC type None, diff-encoder on 👻 FEC type None, diff-encoder on 👻 + EDMAC Framing Modulation BPSK Modulation BPSK T1 Line Build-out 0-133 feet 👻 Rate 1/1 FEC codina Rate 1/1 FEC coding Request-to-Send RTS/CTS loop; No action -Data Rate 256.000 256.000 kbps Data Rate kbps Test Mode Normal -Normal Normal Data (invert) • Data (invert) • 192,168,001,001,30 IP address -+ Spectrum Normal Spectrum Normal Statistics Log Disabled - FSK Disabled -On On -• Scrambler De-scrambler Circuit ID AUPC Disabled -Buffer Size +/- 1024 bits 🔻 SEALINK EIK +4751408010 - 0.0 dBm Eb/No Alarm Pt 3.3 dB Power Level -EDMAC Parameter EDMAC mode EDMAC slave * Carrier On 🔻 Sweep Width kHz (+/-) Slave address Disabled -Warm-up Delay Alarm Masks Clocks Tx AIS RxAIS ✓ Buffer Tx Clock Source Internal -Tx FIFO Rx AGC Eb/No Reference Internal + Ext Ref GT03LOS VINB Adjust 25 \$ ₩ BUC G.703 BPV View AUPC View ODU param Send To Unit Click on a box to change the configuration parameters 7 Read Status Re-Read Config Logs Dilities Close Enable I/O Capture File 7 Help Capture disabled

🔀 Detail of Modem 1, Distant end, link: 11111111111 CDM-570L


Receive Frequency	1645.0000 MHz
FEC type None	e, diff-encoder on 🔻
Modulation	BPSK 💌
FEC coding	Rate 1/1
Data Rate	256.000 kbps
Data (invert)	Normal <
Spectrum	Normal 👻
De-scrambler	On 👻
Buffer Size	+/- 1024 bits 🔻
Eb/No Alarm Pt	3.3 dB
Sweep Width	1 kHz (+/-)

EDMAC FRAME STRUCTURE

EDMAC Frame Structure

<	1008 bit Frame													
UW = 12	Payload = 192	8 + 1	Payload = 192	8 + 1	Payload = 192	8 + 1	Payload = 192	7 + 2	Payload = 192					

EDMAC-2 Frame Structure

Notes:

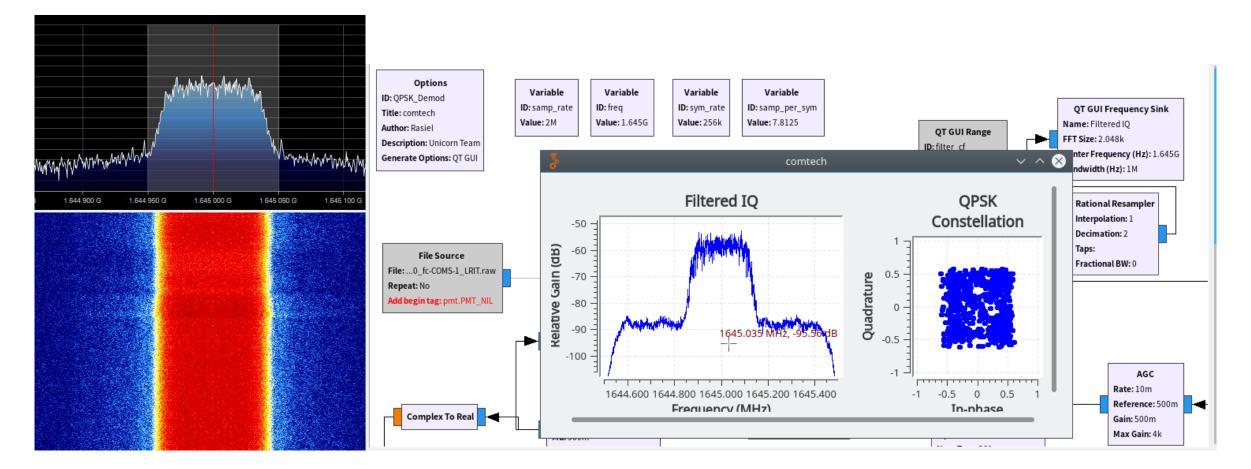
1. 3072 bits for BPSK 5/16 Turbo 2. 2256 bits for BPSK 5/16 Turbo

1

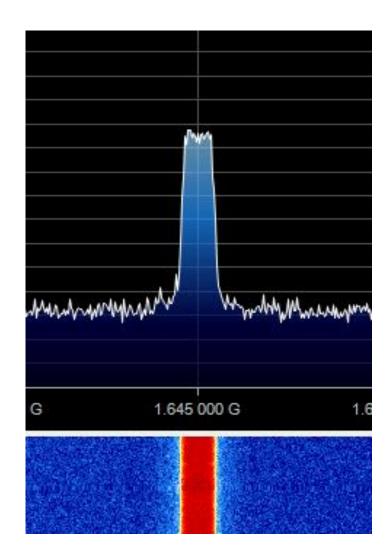
D&I++ Frame Structure

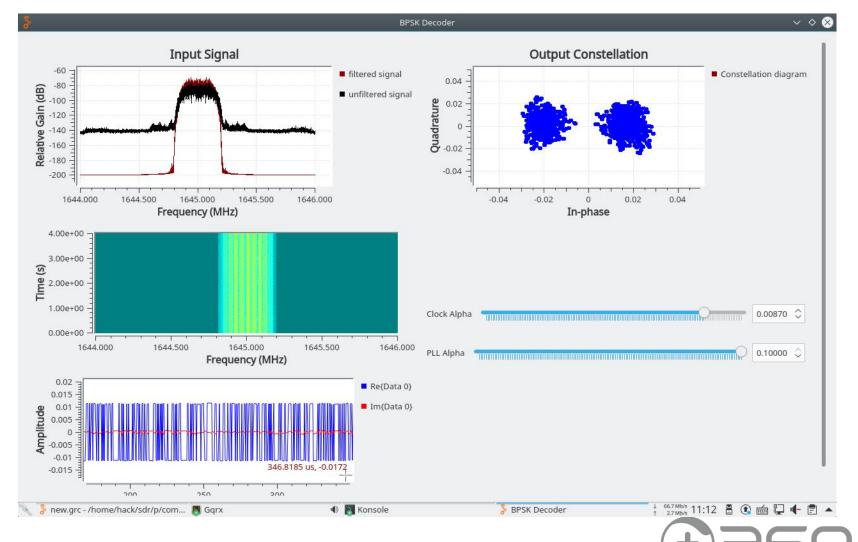
< ────────────────────────────────────												
UW = 20 MF E Payload = 578	8 + 1 E Payload = 578 8 +	+ 1 E Payload = 578 8	8 + 1 E Payload = 578	7 + 2 E Payload = 568								

Item	Description
UW	Unique Word
Payload	User Data
8 + 1	EDMAC Data + 1 Flag bit
7 + 1	AUPC Data + 2 Flag bits
MF	Multi-frame Count, 3 bits
E	ESC Channel, 1 bit



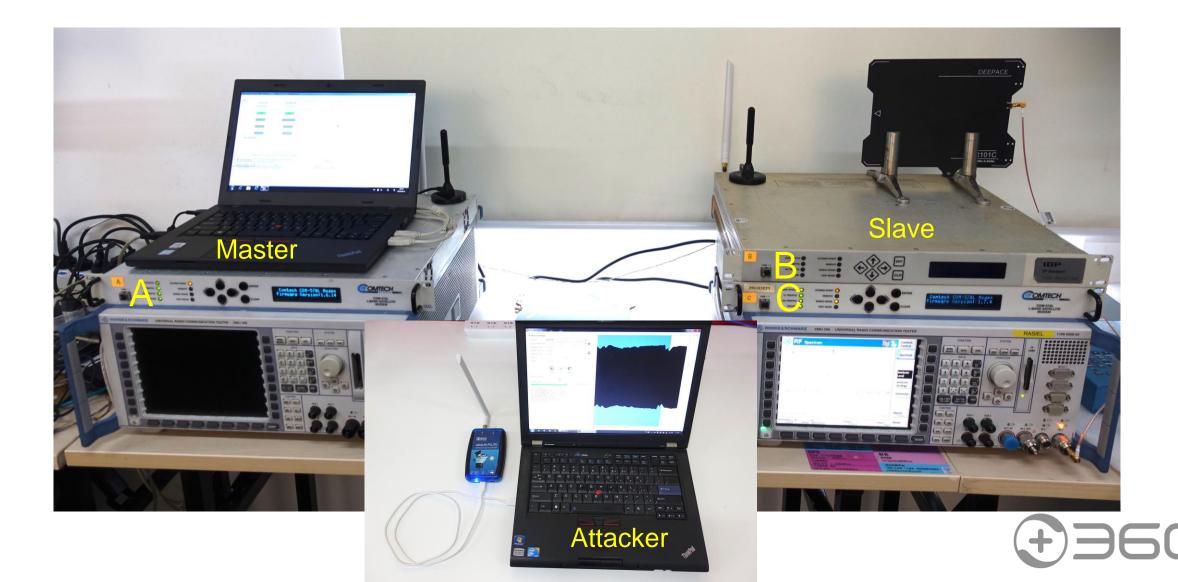
If we can reverse the EDMAC command, we can can control the modem using EDMAC through the


air


QPSK

÷960

BPSK


DECODED DATA

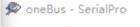
10011110 00100111001010001100100001100111001001100010011000100100110d

02

ATTACK SCENARIO

360 Unicorn Team

-


CONTRACT CONTRACTOR

NORMAL

🗩 oneBus - SerialPro

文件(F) 帮助(H)

文件(F) 帮助(H)

			BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
串口	COM6	\sim	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
波特率	9600	\sim	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
			BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	AA BB	AA BB	AA BB	AA BB	BB
数据位	8	\sim		AA	ББ 0.0	AA	AA	AA	AA	AA							
校验位	None	\sim	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
		_	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
停止位	1	\sim	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
			AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
关闭串		$\left(\right)$	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
11.15.44	one one	Bus	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
	胡类型		BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
016	进制 💿 AS	SCII	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
接收数	据区		BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
	示发送数据		AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
		•	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
接収绩	冲时间 0	▼ MS	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
发送数	据区		BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
追加の	CRC 追加:	SUM	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
			BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB

Modem B

Modem A

Modem A sends data "A" to Modem B, and Modem B sends data "B" in response. The data received by Modem A is "B"!

BE ATTACKED...

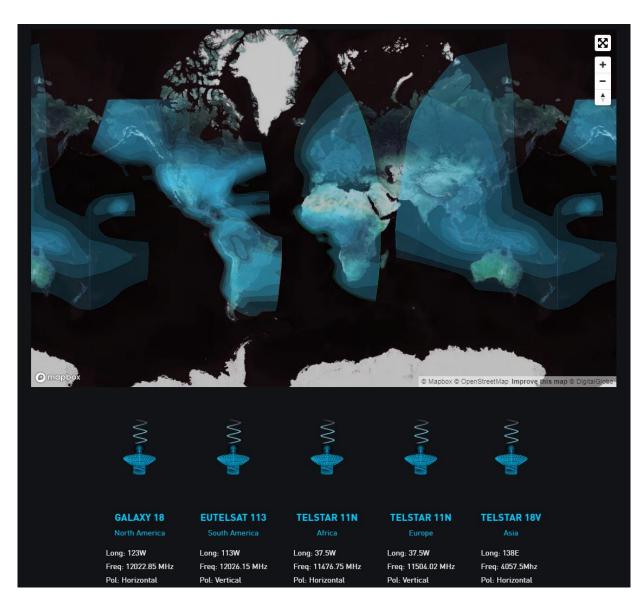
🗩 oneBus - SerialPro

文件(F) 帮助(H)

			AA	AA	AA	ÅÅ	ÅÅ	AA	AA								
串口	COM6	\sim	CC	CC	CC	CC	CC	CC	CC								
波特率	9600			AA	AA	AA	AA			AA		AA	AA	AA	AA	AA	
			CC	CC	CC	CC	CC	CC	CC								
数据位	8	\sim	AA	AA	AA	AA	AA	AA	AA								
校验位	Mono		AA		AA	AA	AA	AA	AA	~~							
12:30/102	None	×	CC	CC	00	CC	CC	00	CC								
停止位	1	\sim	AA		AA	AA	AA	AA	AA	AA							
		0	CC	CC	CC	CC	CC	CC	CC								
关闭串	1日 日	(χ)	AA	AA	AA	AA	AA	AA	AA								
		oneBus	CC	CC	CC	CC	CC	CC	CC								
	加速型		AA	AA	AA	AA	AA	AA	AA								
O 16	进制	• ASCII	CC	CC	CC	CC	CC	CC	CC								
一接收数	据区一		AA	AA	AA	ÅÅ	AA	AA									
□ 泉;	示发送数	据	CC	CC	CC	CC	CC	CC	CC								
	冲时间		AA	AA	AA	AA	AA	AA	AA								
			CC	CC	CC	CC	CC	CC	CC								
发送数	(据区		AA	AA	AA	AA	AA	AA									
追加	CRC	追加SUM		00	00	00	00	00	CC	CC	CC	00	00	00	00	00	CC
			NA	AA	ЧЧ	AA	ÅΆ	AA	ЧЧ	ΝÅ	Ϋ́Ϋ́	ЧЧ	AA	ÅÅ	AA	AA	AA

Modem A

🖈 oneBus - SerialPro

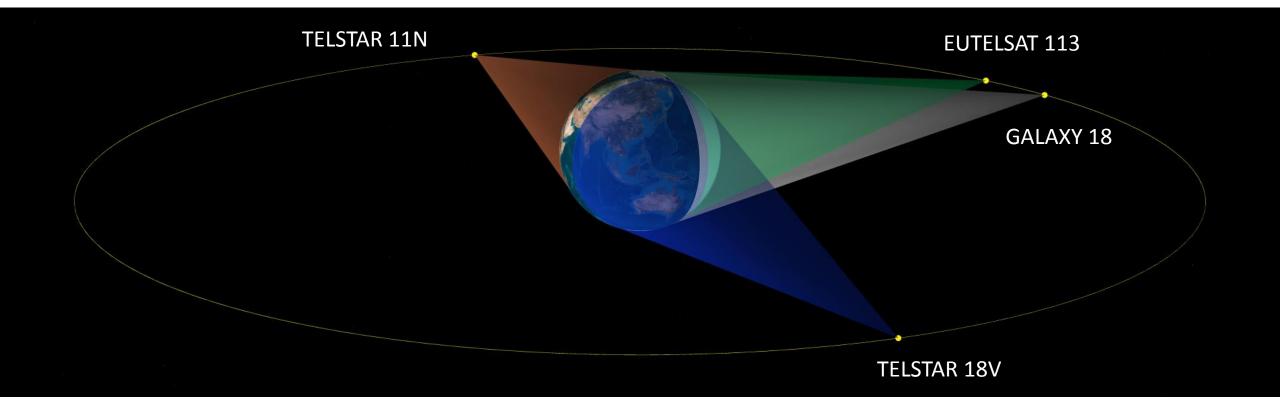

文	14(F)	邽	助(H
~			1.74	221	r

			BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
串口	COM9	\sim	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
波特率	9600	~	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
JX 19 4	5000		AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
数据位	8	\sim	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
			AA	AA	<u>AA</u>	AA	<u>NA</u>	AA	ÅÅ	AA	AA	<u>AA</u>	AA	<u>A</u> A	AA	ÅÅ	AA
校验位	None	~	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
停止位	1		AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
IATIN	1	~	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
		5	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
关闭周	単口	Q	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
ید حب جراں	加据类型	oneBus	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
		ACCTT	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
O 16	世刊	• ASCII	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
一接收数	╽据区──		BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
☑显测	示发送数	据	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
接收缓	(冲时间)) 🖡 ms	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
	L	•	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA DD	AA	AA	AA
发送数	出店区		BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB
追加	CRC j	追加SUM	AA	AA	AA	DD	AA	AA	AA	AA	AA	AA	AA	AA	AA	DD	AA
-			BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB

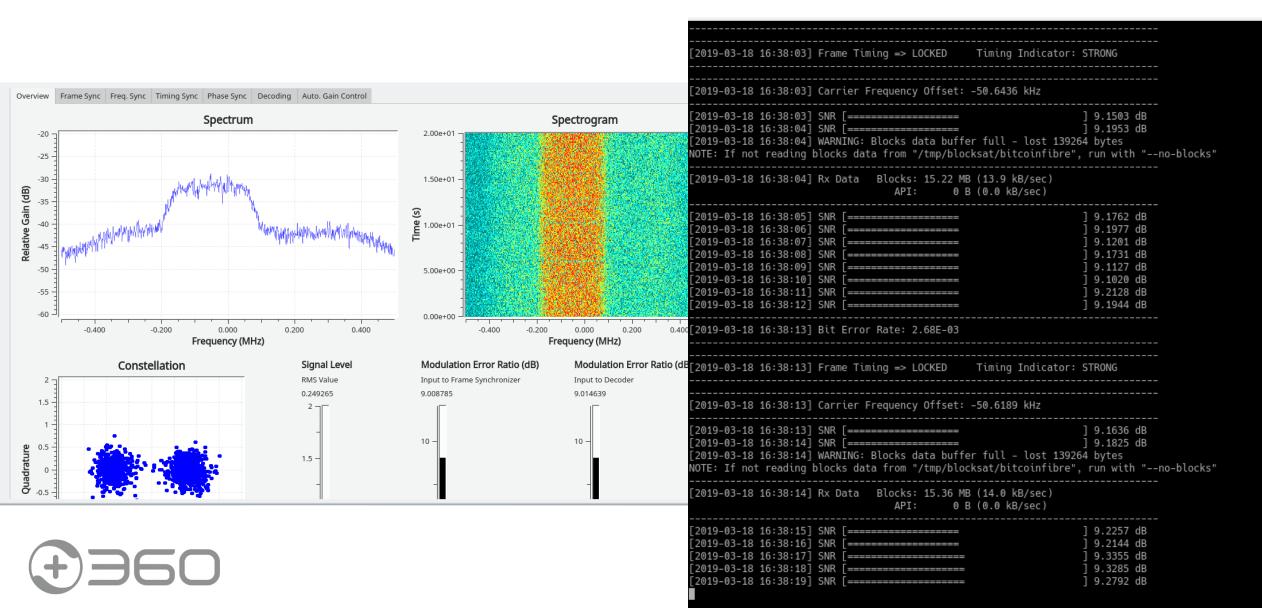
Modem B

Modem A sends data "A" to Modem B, and Modem B sends data "B" in response. But the data received by Modem A is "C"!

BITCOIN-SATELLITE NETWORK



They transmit bitcoin transaction information via satellite networks to places where there is no network around the world.


SATELLITE SIMULATION

TELSTAR 18V Downlink Freq:4057.5MHz Uplink Freq = 4057.5MHz+2225MHz=6282.5MHz

THE FIRST TIME IN THE ASIAN REGION TO SUCCESSFULLY RECEIVE BITCOIN DATA DISTRIBUTED BY BLOCKSTREAM

Thanks

- •360 Technology home page: <u>https://www.360.cn</u>
- Twitter: <u>Rasiel J</u>

