
Title

Revery: from POC to EXP

Chao Zhang
Tsinghua University

Title

http://chao.100871.net2019/10/25 2

2004-2008-2013 è 2013-2016 è 2016-present

§ Hack for fun software and system security
• Automated vul. discovery: CSS TSec 2nd Place (300+ vulnerabilities, 200+ CVE)
• Automated exploit generation: CSS TSec Breakthrough Prize (1st place)
• Automated exploit mitigation: Microsoft BlueHat Prize (Special Recognition Award)
• Automated attack & defense: DARPA CGC (1st in defense 2015, 2nd in offense 2016)
• Manual hacking: DEFCON CTF (2nd in 2016, 5th in 2015 and 2017)

§ Awards/Honors
• Tsinghua University Rising Star 2019
• MIT TR35 China 2018
• Qiu Shi Outstanding Young Scholar 2018
• Thousand Youth Talents Plan 2018
• Young Elite Scientists Sponsorship (CAST) 2017

About Me

Title

http://chao.100871.net2019/10/25 3

§Valuable assets, root causes of most security incidents

Vulnerability: Ghost in Cyberspace

Title

Exploiting Vulnerabilities

Attack Vector
(via spam, website …)

Trigger Vulnerabilities
（buffer overflow …）

Tamper Program States
（Code、Data）

Break Tgt System
（malware, leak, control…）

Bypass Existing Defenses
（DEP, ASLR, sandbox …）

Victim Application

Title

Exploiting in Practice

DEFCON CTF
(blue-lotus, Tea-Deliverer)

Pwn2Own

Title

Exploiting in Practice

DEFCON CTF Pwn2Own

Title

Can machines exploit vulnerabilities like human,

and even better than human?

Automated Exploit Generation (AEG)

Title

Motivation

Know your enemy first.

Sun Tzu

To better defend yourself,

Title

Why AEG?
§ Fixing vulnerabilities
• Automated vul discovery solutions
• High volume of vulnerabilities
• Long time to fix one vulnerability
• 90 days deadline (Google Project Zero)
• Need: automated vul assessment

§ to prioritize vulnerabilities to fix

• Case: Facebook 50M user info leaked.

CVE

Title

Why AEG?
§ Fixing vulnerabilities
• Need: automated vul assessment

§ Vulnerability Assessment
• GDB 'exploitable’plugin

§ Depends on vul type

• WinDBG ‘!exploitable’plugin
§ Depends on basic block type

• HCSIFTER (ASE’17)
§ Recover heap metadata，vul pattern

• Need: assess vulnerability with AEG

Title

Why AEG?
§ Fixing vulnerabilities
• Need: automated vul assessment

§ Vulnerability Assessment
• Need: assess vulnerability with AEG

§ Intrusion Detection
• Malware life becomes shorter

§ FireEye: most malware dies in 2 hours

• Exploits change frequently
§ NSS：IPS have high false negatives

• Need: signature generation with AEG

Title

Why AEG?
§ Fixing vulnerabilities
• Need: automated vul assessment

§ Vulnerability Assessment
• Need: assess vulnerability with AEG

§ Intrusion Detection
• Need: signature generation with AEG

§ The practice and trend
• Exploiting is challenging

§ Mostly depends on human

• The machine is rising
§ AlphaGo

• Need: AEG

DEFCON 2015

Title

Advances in AEG

2008
2009 2011

2012
2013

2014
2015

2016
2017

2018

APEG
(David Brumley)

Generate PoC
based on patches

Oxford master thesis
(Sean Healan)

Dynamic analysis +
constraint solving

AEG
(David Brumley)

Src + symbex
Dynamic analysis + SMT

Mayhem
(David Brumley)
Binary + symbex

Dynamic analysis + SMT

PolyAEG
(Purui Su)

polymorphic ROP

FlowStitch
(Zhenkai Liang)

Data Only Attack

ShellSwap
(David Brumley)

Replace shellcode

Q
(David Brumley)

ROP compiler

HaCRS
(Yan Shoshitaishvili)

Human-machine collabration

FUZE
(kernel)

CGC
（DARPA）

cfp

CGC
（DARPA）
launched

CGC
（DARPA）

qual

CGC
（DARPA）

final

Revery
(Chao Zhang)

SHRIKE
(heap feng shui)

2010

teEther
(smart contract)

bop
(data only)

Title

DARPA Cyber Grand Challenge
Automated Attack and Defense

（1st in defense in 2015，2nd in offense in 2016）

Title

What is AEG?

Title

while

int outprintf(const char *fmt, …)
{

int count; char buf[1024]; va_list args;
va_start(args, fmt);
count = vsprintf(buf, fmt, args);
outwrite(buf, count); // print out

}

int main(int argc, char* argv[])
{

const char *arg;
while((arg = *argv++) != 0) {

switch (arg[0]) {
case ‘-’: {

switch (arg[1]) {
case 0:
…
default:

outprintf(“unknown switch %s\n”, arg[1]);
}

}
default: …
}

…

outprintf()

switch

main()

switch

vsprintf()

Sample Vulnerability：CVE-2009-4270
Vul trigger conditions:
§ Path constraints
§ Vul constraints

Discover vulnerabilities :
§ Symbolic execution
§ Fuzzing (testing)

Title

Exploit Vulnerability：CVE-2009-4270
int outprintf(const char *fmt, …)
{

int count; char buf[1024]; va_list args;
va_start(args, fmt);
count = vsprintf(buf, fmt, args);
outwrite(buf, count); // print out

}

int main(int argc, char* argv[])
{

const char *arg;
while((arg = *argv++) != 0) {

switch (arg[0]) {
case ‘-’: {

switch (arg[1]) {
case 0:
…
default:

outprintf(“unknown switch %s\n”, arg[1]);
}

}
default: …
}

…

ou
tp

rin
tf

…
fmt

ret addr
count
args
bufus

er
 in

pu
t

m
ai

n

esp

To exploit vul:
• Trigger vul:

§ Path constraints
§ Vul constraints

• Manipulate states:
§ Shellcode constraints
§ EIP constraints
§ Memory layout
§ Defense bypass

Solutions：
• Symbolic execution

Function returns

Title

General Workflow of AEG

Dynamic Analysis Symbolic Execution

PoC Locate Vul

Crash scene analysis

EIP
controllable

Shellcode
placement

ROP
gadgets

ou
tp

rin
tf

…
fmt

ret addr
count
args
bufus

er
 in

pu
t

m
ai

n Path constraints

Vul constraints

EIP constraints
（shellcode/ROP）

Shellcode
constraints

SMT solverPoC: proof-of-concept inputs, able to trigger vulnerabilities.

Title

Challenge: non-exploitable PoC

§Sometimes, the PoC is easy to exploit
• Stack-based buffer overflow
• Format string vulnerabilities

§Most often, the PoC is non-exploitable
• The EIP is not controllable
• The program states cannot be tampered

Dynamic Analysis

PoC Locate Vul

Crash scene analysis

EIP
controllable

Shellcode
placement

ROP
gadgets

The crashing path taken by the PoC could be
non-exploitable (even by human).

Existing AEG solutions will fail in this case.

Title Example non-exploitable PoC

Read from invalid addr

Title

The crashing path taken by PoC is non-exploitable.

Look for diverging exploitable paths.

Title

ACM CCS 2018

Title

Example

Ø Problem：The crashing path (9->10->11->12->15) taken by PoC is non-exploitable

Ø Backtrace to which point? How to explore diverging paths? How to enter exploitable states?

Ø Intuition: backtrace the PoC path, look for diverging paths with exploitable states, trigger vul and exploits

Around the vul point fuzzing (9->11->13->14) Path stitching (9-10-11, 11-13-14)

Title

PoC analysis: locate vulnerability

obj1 (tag1)

obj2 (tag2)

gvar.obj1: tag1

Analyze the PoC’s execution trace, and validate the following security rules:
Ø V1: only access objects with intended birthmark, e.g., tag_ptr == tag_obj
Ø V2: only read objects with busy status
Ø V3: only write objects with non-freed status

Each object is associated with: a birthmark taint tag, and an access state (uninitialized, busy, freed)

Title

PoC analysis: identify exceptional object

ØExceptional objects: tampered by the vulnerability
Ø E.g., obj2 is tampered by the buffer overflow in obj1.

Exceptional objects important, since they are controlled by attackers, and
further operations on them could cause programs being exploited.

Title

PoC analysis: identify exceptional object

ØExceptional objects
ØExceptional objects’ layout digraph:

Ø describes how the exceptional object is placed in memory.
Ø Nodes: memory objects
Ø Edges: Point-to relationship between objects

Layout digraph

Title

PoC analysis: identify exceptional object

ØExceptional objects
ØExceptional objects’ layout digraph:
ØExceptional objects’ layout-contributor digraph :

Ø describes how to generate objects similar to exceptional objects.
Ø Nodes: instructions which allocate the objects
Ø Edges: instructions which setup the point-to relationship between objects

obj2

Layout digraph

Title

Explore Diverging Paths

• Backtrace the PoC path to vulnerability points

• Explore diverging paths around vulnerability points
• Have similar layouts as exceptional objects

• Could be controlled by attackers
• Have sensitive operations on those objects

• Could cause damages to programs

How to explore diverging paths?

Title

Explore Diverging Paths

• A straightforward solution: symbolic execution
• Explore program paths symbolically

• But it has scalability issue
• Path explosion issue
• Constraint solving challenge
• Symbolic value concretization

• Memory allocation: symbolic size
• Memory access: symbolic index

• The concrete value could be improper for
exploiting.

How to explore diverging path?

Title

Explore Diverging Paths

• Our solution: layout-oriented fuzzing
• Explore paths by fuzz testing
• Directed fuzzing: use the memory layout

contributor instructions as targets
• Following these instructions, we can generate

objects similar to exceptional objects.
• Path filtering: find paths that have sensitive

operations operating on those objects
• Exploitable states

How to explore diverging path?

Diverging path: 9->11->13->14
(not necessary to trigger vulnerability)

Title

Exploit Synthesis

Crashing path: 9->10->11->12
Diverging path: 9->11->13->14
Exploiting path: 9->10->11->13->14->15

Ø Find stitching points
Ø Try and error
Ø Metrics: path reusing rate

Ø Path stitching
Ø Explore candidate sub-paths between

stitching points, with symbolic execution

Ø Exploit generation：
Ø Solve the constraints in stitched path
Ø Trigger vulnerabilities, and enter

exploitable states.

Title

ØAnalyze vulnerability and exceptional objects

ØExplore diverging paths with layout-oriented fuzzing, and find exploitable states

ØStitch PoC path and diverging path, solve constraints and generate exploits.

Revery Overview

Title

Ø Target applications: 19 CTF challenges
Ø Revery generates exploits for 9 of them, triggers exploitable states for 5, fails for another 5
Ø Revery could do AEG for memory read corruption, heap corruption and non-crashing PoC。

Evaluation

Revery’s limitation：
Ø It’s based on Angr, lacking support for many syscalls, unable to support real world applications
Ø It cannot bypass defenses like ASLR yet. So we disable this defense in the evaluation.

Title

DEMO
Ø A UAF pwn from RHme3 CTF 2017.

Ø Generate an exploit for a PoC crashing at a non-exploitable memory read operation.
Note: The ASLR defense is turned off in the experiment.

Title

Takeaway

Title

AEG vs. Revery
§ Traditional AEG solutions:
• Highly depend on the crashing scene
• Use dynamic analysis and symbex

§ Challenges
• PoC crashing scene is non-exploitable
• Symbolic execution is not scalable
• Poor support for heap vulnerabilities

§ Revery
• Explore diverging paths rather than PoC path

• Use fuzzing rather than symbolic execution, to
explore diverging paths

• Use layout contributor instructions as targets,
to direct the fuzzing and speedup.

• Use symbolic execution to stitch PoC path and
diverging path, to generate exploits

Revery only pushes AEG one small step forward.

Title

Roadblocks of AEG
§ Exploit specification (AH)
• Conditions of anti-specification
• Partitioning of code privilege

§ Exploit generation (BCDE)
• Infer pre/post conditions
• Infer loop pre condition
• Infer paths reachable to targets
• Exploit derivability (Revery)

§ Multi-interaction (F)
• Multiple vulnerabilities, multi-operations

§ Environment manipulation (GIJK)
• Race condition
• Memory/heap fengshui
• Time analysis, to infer size etc.
• Information leakage, e.g., side channel

§ Infrastructure
• Symbex, taint analysis, binary analysis…

Title

Thanks!
Q&A

