
Exploiting CVE-2018-8611

Windows Kernel Transaction Manager (KTM) Race Condition

Aaron Adams - Power Of Community 2019

© NCC Group 2019
1 / 101

About

Exploit Development Group (EDG), NCC Group

Occasionally publish stuff: Cisco ASA, Xen, Samba, Stagefright, win32k

Write exploits to help consultants do their job

Focus on patched vulns

Aaron Adams

Presenting

@fidgetingbits, aaron.adams@nccgroup.com

Cedric Halbronn

Unable to attend

@saidelike, cedric.halbronn@nccgroup.com

© NCC Group 2019
2 / 101

This talk

Discuss an interesting race condition affecting Microsoft Kernel Transaction Manager (KTM)

Found used in the wild by Kaspersky

Exploited by us early 2019

Never got to see the original exploit or details

Minimal details from Kaspersky at the time

Race condition in KTM

Exploitable from inside browser sandbox

Works on Windows 10

A few hints for triggering the race

© NCC Group 2019
3 / 101

https://securelist.com/zero-day-in-windows-kernel-transaction-manager-cve-2018-8611/89253/

Notable KTM-related security findings

2010 - CVE-2010-1889 - Tavis Ormandy - invalid free

2015 - MS15-038 - James Forshaw - type confusion

2017 - CVE-2017-8481 - j00ru - stack memory disclosure

2018 - CVE-2018-8611 - Kaspersky blog

2019 - Proton Bot malware uses KTM

Used transacted versions of common functions to evade API inspection

© NCC Group 2019
4 / 101

https://packetstormsecurity.com/files/92845/Microsoft-Windows-KTM-Invalid-Free-With-Reused-Transaction-GUID.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=245&can=1&q=transaction
https://bugs.chromium.org/p/project-zero/issues/detail?id=1207
https://securelist.com/zero-day-in-windows-kernel-transaction-manager-cve-2018-8611/89253/
https://fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/

Tooling

Virtualization: VMWare Workstation

Binary analysis: IDA Pro, Hex-Rays Decompiler

Binary diffing: Diaphora

Collaboration: IDArling

Debugging:

WinDbg (ring0), virtualkd, x64dbg (ring3)

Additional plugins/tools: ret-sync, HexRaysPyTools

Structure analysis: Vergilius Project, ReactOS source

Slides: Remarkjs

© NCC Group 2019
5 / 101

https://www.vmware.com/products/workstation-pro.html
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/decompiler/
https://github.com/joxeankoret/diaphora
https://github.com/IDArlingTeam/IDArling
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
http://sysprogs.com/legacy/virtualkd/
https://x64dbg.com/
https://github.com/bootleg/ret-sync
https://github.com/igogo-x86/HexRaysPyTools
https://www.vergiliusproject.com/
https://github.com/reactos/reactos
https://github.com/remarkjs/remark

Agenda

What is KTM?

Patch analysis

Triggering the bug

Finding a write primitive

Building a read primitive

Privilege escalation

Recent bonus info

© NCC Group 2019
6 / 101

Windows Kernel Transaction Manager (KTM)

© NCC Group 2019
7 / 101

KTM - What is it?

MSDN documentation

KTM Portal

Kernel service added in Windows Vista (~2006)

Windows 7 and earlier: ntoskrnl.exe

Windows 8 and later: tm.sys

Provide "ACID" functionality: atomic, consistent, isolated, and durable

KTM service used by two major Windows components

Transactional Registry

Transactional NTFS

A few dozen APIs/system calls exposed to userland

© NCC Group 2019
8 / 101

https://docs.microsoft.com/en-us/windows/win32/ktm/kernel-transaction-manager-portal

Important objects

KTM service has 4 fundamental kernel objects

All referenced counted objects created by ObCreateObject()

Transaction Manager (TM)

Manages a log of transactions associated with one or more resource managers

Resource Manager (RM)

Manages enlistments related to a specific managed resource doing work for a Transaction

Transaction (Tx)

Tracks a series of sub actions making up a single atomic operation

Enlistment (En)

Some code responsible for doing work related to a Transaction

© NCC Group 2019
9 / 101

Transaction Manager (TM)

Created using CreateTransactionManager()

Usually first to exist

HANDLE CreateTransactionManager(

 IN LPSECURITY_ATTRIBUTES lpTransactionAttributes,

 LPWSTR LogFileName,

 IN ULONG CreateOptions,

 IN ULONG CommitStrength

);

Allocates a _KTM structure on the non-paged pool

TmTm pool tag

A resource manager must be associated with some TM

Optional log for transactions

A volatile TM is one that uses no log file

Set TRANSACTION_MANAGER_VOLATILE flag in CreateOptions parameter

Logs have limited size - problematic for exploitation

© NCC Group 2019
10 / 101

https://docs.microsoft.com/en-us/windows/win32/api/ktmw32/nf-ktmw32-createtransactionmanager
https://www.vergiliusproject.com/kernels/x64/Windows%207%20%7C%202008R2/SP1/_KTM

_KTM

Most fields omitted

//0x3c0 bytes (sizeof)

struct _KTM

{

 ULONG cookie; //0x0

 struct _KMUTANT Mutex; //0x8

 enum KTM_STATE State; //0x40

 [...]

 ULONG Flags; //0x80

 [...]

 struct _KRESOURCEMANAGER* TmRm; //0x2a8

 [...]

};

© NCC Group 2019
11 / 101

Resource Manager (RM)

Created using CreateResourceManager()

HANDLE CreateResourceManager(

 IN LPSECURITY_ATTRIBUTES lpResourceManagerAttributes,

 IN LPGUID ResourceManagerId,

 IN DWORD CreateOptions,

 IN HANDLE TmHandle,

 LPWSTR Description

);

Must be passed a TM handle

Optional Description parameter

Allocates a _KRESOURCEMANAGER structure on the non-paged pool

TmRm pool tag

© NCC Group 2019
12 / 101

https://www.vergiliusproject.com/kernels/x64/Windows%207%20%7C%202008R2/SP1/_KRESOURCEMANAGER

_KRESOURCEMANAGER

//0x250 bytes (sizeof)

struct _KRESOURCEMANAGER

{

 struct _KEVENT NotificationAvailable; //0x0

 ULONG cookie; //0x18

 enum _KRESOURCEMANAGER_STATE State; //0x1c

 ULONG Flags; //0x20

 struct _KMUTANT Mutex; //0x28

 [...]

 struct _KQUEUE NotificationQueue; //0x98

 struct _KMUTANT NotificationMutex; //0xd8

 struct _LIST_ENTRY EnlistmentHead; //0x110

 ULONG EnlistmentCount; //0x120

 LONG (*NotificationRoutine)(struct _KENLISTMENT* arg1, VOID* arg2, VOID* arg3,

 ULONG arg4, union _LARGE_INTEGER* arg5, ULONG arg6, VOID* arg7);

 [...]

 struct _KTM* Tm; //0x168

 struct _UNICODE_STRING Description; //0x170

 [...]

};

© NCC Group 2019
13 / 101

_KRESOURCEMANAGER fields

Tm - Pointer to the associated transaction manager

Description - Unicode description of resource manager

Mutex - Locks RM. Other code cannot

Parse the resource manager's enlistments list

Read Description

etc.

EnlistmentHead - List of associated enlistments with resource manager

NotificationQueue - Notification events

Queried from ring3 to read enlistment state change events

© NCC Group 2019
14 / 101

Transaction (Tx)

Created using CreateTransaction() function

HANDLE CreateTransaction(

 IN LPSECURITY_ATTRIBUTES lpTransactionAttributes,

 IN LPGUID UOW,

 IN DWORD CreateOptions,

 IN DWORD IsolationLevel,

 IN DWORD IsolationFlags,

 IN DWORD Timeout,

 LPWSTR Description

);

Creates a _KTRANSACTION structure on the non-paged pool using

TmTx pool tag

Represents whole piece of work to be done

Resource managers enlist in this transaction to complete the work

© NCC Group 2019
15 / 101

https://docs.microsoft.com/en-us/windows/win32/api/ktmw32/nf-ktmw32-createtransaction
https://www.vergiliusproject.com/kernels/x64/Windows%207%20%7C%202008R2/SP1/_KTRANSACTION

_KTRANSACTION

//0x2d8 bytes (sizeof)

struct _KTRANSACTION

{

 struct _KEVENT OutcomeEvent; //0x0

 ULONG cookie; //0x18

 struct _KMUTANT Mutex; //0x20

 [...]

 struct _GUID UOW; //0xb0

 enum _KTRANSACTION_STATE State; //0xc0

 ULONG Flags; //0xc4

 struct _LIST_ENTRY EnlistmentHead; //0xc8

 ULONG EnlistmentCount; //0xd8

 [...]

 union _LARGE_INTEGER Timeout; //0x128

 struct _UNICODE_STRING Description; //0x130

 [...]

 struct _KTM* Tm; //0x200

 [...]

};

© NCC Group 2019
16 / 101

Enlistments (En)

Created using CreateEnlistment()

 hEn = CreateEnlistment(

 NULL, // lpEnlistmentAttributes

 hRM, // ResourceManagerHandle - Existing resource manager handle

 hTx, // TransactionHandle - Existing transaction manager handle

 0x39ffff0f, // NotificationMask - Special value to receive all possible notifications

 0, // CreateOptions

 NULL // EnlistmentKey

);

Allocates a _KENLISTMENT structure on the non-paged pool

TmEn pool tag

Each has an assigned GUID

Must be associated with both a resource manager and a transaction manager

Typically a transaction will have multiple enlistments

© NCC Group 2019
17 / 101

https://docs.microsoft.com/en-us/windows/win32/api/ktmw32/nf-ktmw32-createenlistment
https://www.vergiliusproject.com/kernels/x64/Windows%207%20%7C%202008R2/SP1/_KENLISTMENT

_KENLISTMENT

//0x1e0 bytes (sizeof)

struct _KENLISTMENT

{

 ULONG cookie; //0x0

 struct _KTMOBJECT_NAMESPACE_LINK NamespaceLink; //0x8

 struct _GUID EnlistmentId; //0x30

 struct _KMUTANT Mutex; //0x40

 struct _LIST_ENTRY NextSameTx; //0x78

 struct _LIST_ENTRY NextSameRm; //0x88

 struct _KRESOURCEMANAGER* ResourceManager; //0x98

 struct _KTRANSACTION* Transaction; //0xa0

 enum _KENLISTMENT_STATE State; //0xa8

 ULONG Flags; //0xac

 ULONG NotificationMask; //0xb0

 [...]

};

© NCC Group 2019
18 / 101

_KENLISTMENT fields of interest

Transaction - The transaction that the enlistment is actually doing work for

Flags - Indicates the type and state of the enlistment

Mutex - Locks the enlistment and prevents other code from manipulating it

State - The current state of the enlistment in relation to the transaction

NotificationMask - Which notifications should be queued to the resource manager related to this

enlistment

NextSameRm - A linked list of enlistments associated with the same resource manager

This is the list entry whose head is _KRESOURCEMANAGER.EnlistmentHead

© NCC Group 2019
19 / 101

_KENLISTMENT flags

The Flags field uses undocumented flags

enum KENLISTMENT_FLAGS {

 KENLISTMENT_SUPERIOR = 0x01,

 KENLISTMENT_RECOVERABLE = 0x02,

 KENLISTMENT_FINALIZED = 0x04,

 KENLISTMENT_FINAL_NOTIFICATION = 0x08,

 KENLISTMENT_OUTCOME_REQUIRED = 0x10,

 KENLISTMENT_HAS_SUPERIOR_SUB = 0x20,

 KENLISTMENT_IS_NOTIFIABLE = 0x80,

 KENLISTMENT_DELETED = 0x80000000

};

© NCC Group 2019
20 / 101

How to finalize and free an enlistment?

Enlistments are a reference counted object

Call some code path that triggers TmpFinalizeEnlistment() to lower ref counts

A Prepared enlistment upon moving to Committed state will be finalized

Use CommitComplete() function on enlistment handle

Then CloseHandle() to remove our final userland reference

Either frees immediately, or upon any other KTM kernel code doing final dereference

© NCC Group 2019
21 / 101

https://docs.microsoft.com/en-us/windows/win32/api/ktmw32/nf-ktmw32-commitcomplete

Structure relationship overview

© NCC Group 2019
22 / 101

Transaction and Enlistment States

Transaction not complete until all enlistments have committed

Transaction cannot be committed until all of enlistments transition through a series of synchronized

states

A transaction with only one enlistment is the exception

Typical state transitions

PrePreparing -> PrePrepared -> Preparing -> Prepared -> Committed

© NCC Group 2019
23 / 101

_KENLISTMENT_STATE

enum _KENLISTMENT_STATE

{

 //...

 KEnlistmentPreparing = 257,

 KEnlistmentPrepared = 258,

 KEnlistmentCommitted = 260,

 //...

 KEnlistmentPreparing = 257,

 //...

 KEnlistmentPrePreparing = 266,

 //...

 KEnlistmentPrePrepared = 273,

};

© NCC Group 2019
24 / 101

Notifications

Dictated by enlistment NotificationMask option at creation

Each RM has a set of associated Tx notifications that occur on milestone events, such as an En

switching from one state to another

Notifications can be read using GetNotificationResourceManager()

The events are queued/retrieved using FIFO

BOOL GetNotificationResourceManager(

IN HANDLE ResourceManagerHandle,

OUT PTRANSACTION_NOTIFICATION TransactionNotification,

IN ULONG NotificationLength,

IN DWORD dwMilliseconds,

OUT PULONG ReturnLength

);

TRANSACTION_NOTIFICATION struct contains a TRANSACTION_NOTIFICATION_RECOVERY_ARGUMENT

Tells us which En a notification is associated with

© NCC Group 2019
25 / 101

https://docs.microsoft.com/en-us/windows/win32/api/ktmw32/nf-ktmw32-getnotificationresourcemanager

Recovery

If a Tx fails or is interrupted for whatever reason, it can be possible to recover

Recovery in part possible by calling RecoverResourceManager()

BOOL RecoverResourceManager(

IN HANDLE ResourceManagerHandle

);

During this recovery phase, each enlistment associated with transactions in specific states will

receive a notification

Allows the enlisted workers to synchronize on what they were doing for the transaction

© NCC Group 2019
26 / 101

Understanding CVE-2018-8611

© NCC Group 2019
27 / 101

Diffing - functions

© NCC Group 2019
28 / 101

Diffing - assembly

© NCC Group 2019
29 / 101

Diffing - Hex-Rays pre-cleanup

© NCC Group 2019
30 / 101

Diffing - Hex-Rays post-cleanup

© NCC Group 2019
31 / 101

© NCC Group 2019
32 / 101

© NCC Group 2019
33 / 101

© NCC Group 2019
34 / 101

© NCC Group 2019
35 / 101

© NCC Group 2019
36 / 101

© NCC Group 2019
37 / 101

© NCC Group 2019
38 / 101

© NCC Group 2019
39 / 101

© NCC Group 2019
40 / 101

© NCC Group 2019
41 / 101

What does TmRecoverResourceManager() normally do?

© NCC Group 2019
42 / 101

Vulnerability analysis key points

A recovering _KRESOURCEMANAGER is unlocked in order to queue a notification

Code retains pointer to associated _KENLISTMENT, but no lock

Sends notifications about said _KENLISTMENT

Attempts to tell if _KENLISTMENT is finalized, but in a racable location

Drops the reference count by 1, which allows it to become freed when if finalized

Relocks _KRESOURCEMANAGER

Tests for a boolean that wasn't set if race condition occurs

Uses retained _KENLISTMENT pointer

_KENLISTMENT could now be freed

© NCC Group 2019
43 / 101

Triggering CVE-2018-8611

© NCC Group 2019
44 / 101

Faking a race win

Use WinDbg to force race window open

Patch KeWaitForSingleObject() so we guarantee pEnlistment is freed

Patch is just an infinite loop

 //...

 ObfDereferenceObject(pEnlistment);

 KeWaitForSingleObject(&pResMgr->Mutex, Executive, 0, 0, 0i64);

 //...

 } else {

 ObfDereferenceObject(pEnlistment);

 }

 if (bEnlistmentIsFinalized) {

 pEnlistment_shifted = EnlistmentHead_addr->Flink;

 bEnlistmentIsFinalized = 0;

 } else {

 pEnlistment_shifted = pEnlistment->NextSameRm.Flink;

 }

After freeing all _KENLISTMENTS test if pEnlistment->NextSameRm references freed memory

© NCC Group 2019
45 / 101

Exploitable loop state

© NCC Group 2019
46 / 101

Which _KENLISTMENT to free?

If we spam a lot of _KENLISTMENT and try to repeatably race...

How do we know which one to free?

Can't just free them all every time, as we want to maximize attempts

GetNotificationResourceManager() tells us what a Enlistment has been touched by the loop!

Vulnerable function unlocks the RM specifically to send a notification

Correlate the notification to the enlistment, and free it

Remove infinite loop after we triggered free from userland

If UAF triggers, it confirms our understanding of the bug

Run with Driver Verifier to easily confirm

© NCC Group 2019
47 / 101

Actually winning the race

How do we win this race without patching KeWaitForSingleObject()?

Was hinted in the Kaspersky blog (though still not obvious to us for quite some time)

Suspend the thread stuck in the TmRecoverResourceManager() causing it to effectively block

until woken up

If it blocks at a time when the RM is unlocked, we are free to free

If not, no UAF happens, and we keep trying

Congest RM lock to increase likelihood of thread suspending where we want

Have a higher priority thread constantly triggering syscall that locks RM

Ex: Query the RM description

© NCC Group 2019
48 / 101

Lock congestion

© NCC Group 2019
49 / 101

Lock congestion

© NCC Group 2019
50 / 101

Lock congestion

© NCC Group 2019
51 / 101

Lock congestion

© NCC Group 2019
52 / 101

Lock congestion

© NCC Group 2019
53 / 101

Lock congestion

© NCC Group 2019
54 / 101

Lock congestion

© NCC Group 2019
55 / 101

Lock congestion

© NCC Group 2019
56 / 101

Lock congestion

© NCC Group 2019
57 / 101

Thread suspension detection

A thread will become blocked on some natural blocking point

Like waiting to lock the congested resource manager mutex

How can you tell if a thread is suspended?

Use NtQueryThreadInformation() to query thread

ThreadInformationClass of ThreadLastSyscall

Returns STATUS_UNSUCCESSFUL if thread is not suspended

© NCC Group 2019
58 / 101

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryinformationthread

Lock congestion

© NCC Group 2019
59 / 101

Lock congestion

© NCC Group 2019
60 / 101

Lock congestion

© NCC Group 2019
61 / 101

Lock congestion

© NCC Group 2019
62 / 101

Lock congestion

© NCC Group 2019
63 / 101

Lock congestion

© NCC Group 2019
64 / 101

_KENLISTMENT replacement

We know everything is on the non-paged pool

We know the size of the _KENLISTMENT

Non-paged pool feng shui is the obvious approach

© NCC Group 2019
65 / 101

Non-Paged pool feng shui

Widely known, not too widely shared?

Named Pipe writes allocate on non-paged pool

Code handled by npfs.sys

Tracked by NpFr pool tag

!poolfind NpFr

Persistent until other end of pipe reads data

Chunk free occurs when data is read

Allocates prefixed with an undocumented DATA_ENTRY structure

DATA_ENTRY layout has changed between Vista and Windows 10

Size of chunk is fully controlled

All data of chunk aside from DATA_ENTRY is fully controlled

ReactOS is best starting point

Reversing/hexdump for relevant changes

© NCC Group 2019
66 / 101

Feng shui layout #1

As usual, want to avoid coalescing causing big holes

Writes on alternate named pipes

© NCC Group 2019
67 / 101

Feng shui layout #2

© NCC Group 2019
68 / 101

Feng shui layout #3

© NCC Group 2019
69 / 101

Feng shui layout #4

© NCC Group 2019
70 / 101

Feng shui layout #5

© NCC Group 2019
71 / 101

Faking a _KENLISTMENT with a named pipe chunk

© NCC Group 2019
72 / 101

End result

© NCC Group 2019
73 / 101

Detecting a race win

How seize control of loop?

No SMAP on Windows!

Replacement _KENLISTMENT->NextSameRM points to yet another fake userland _KENLISTMENT

Userland _KENLISTMENT->NextSameRM points to itself

We refer to this as a 'trap' enlistment

Kernel is now temporarily stuck in an infinite loop

Kernel unsets notifiable flag on userland enlistment

This modification in userland tells us we won!

© NCC Group 2019
74 / 101

Detecting a race win

© NCC Group 2019
75 / 101

Now what?

© NCC Group 2019
76 / 101

Trap enlistment

Inject list of new enlistments into Flink when ready

Tail of new list of enlistments can be another trap

© NCC Group 2019
77 / 101

Debugging a race win?

© NCC Group 2019
78 / 101

How to escape the loop?

We have control of the loop now

We need a write primitive of some kind

But also need to escape the loop?

© NCC Group 2019
79 / 101

Initial kernel pointer leak

Thank you KeWaitForSingleObject()

© NCC Group 2019
80 / 101

Escaping the loop

We can now exit the loop!

Introduce an 'escape' enlistment

Set KENLISTMENT->NextSameRm = &_KRESOURCEMANAGER.EnlistmentHead

Exit cleanly

No crashes.. reproducable testing, etc.

© NCC Group 2019
81 / 101

What an escape looks like

LWP = Limited write primitive (explained soon)

© NCC Group 2019
82 / 101

Building a write primitive

© NCC Group 2019
83 / 101

Vulnerable loop constraints

Finding a write primitive is somewhat limited

We are stuck inside this recovery loop

What code paths do we follow?

KeReleaseMutex() seems best

List-based mirror-write primitives are safe unlinked after Windows 7 :(

Keep looking...

Found an arbitrary increment inside KiTryUnwaitThread() call

 if ((OwnerThread->WaitRegister.Flags & 3) == 1) {

 ThreadQueue = OwnerThread->Queue;

 if (ThreadQueue)

 _InterlockedAdd(&ThreadQueue->CurrentCount, 1u);

But things get complicated..

© NCC Group 2019
84 / 101

Arbitrary increment primitive

KeReleaseMutex() - KeReleaseMutant() wrapper

KeReleaseMutant() - Our high level primitive function

KiTryUnwaitThread() - Gives us our increment primitive

KiProcessThreadWaitList() - Unavoidable because of increment primitive

KiUnlinkWaitBlocks() - Have to satisfy its attempt to unlink

KiReadyThread() - Unavoidable call on our fake thread

KiRequestProcessInSwap() - Have to satisfy early exit

© NCC Group 2019
85 / 101

Repeatable arbitrary address increment

Too complicated to explain in detail

Follow up blog series covers line by line

Positives

Can chain multiple increments together

Effectively an arbitrary write primitive

Negatives

Need to know the starting contents of the address being written to

Some risks related to running at DISPATCH_LEVEL

© NCC Group 2019
86 / 101

Primitive injection at a glance

© NCC Group 2019
87 / 101

What does our increment primitive look like?

Lots of constraints

Some requirements change across OS versions

© NCC Group 2019
88 / 101

Building an arbitrary kernel read primitive

© NCC Group 2019
89 / 101

What to do?

We have an arbitrary write as long as we know original value

We know where _KRESOURCEMANAGER is

We can not set a Description field

Means we know _UNICODE_STRING Length and Name

Point anywhere we want

Call NtQueryResourceManager syscall to get description

Rinse and repeat

© NCC Group 2019
90 / 101

What does our read primitive look like?

© NCC Group 2019
91 / 101

Privilege escalation

© NCC Group 2019
92 / 101

Data only attack - Using the increment primitive

We can trigger the increment primitive indefinitely

Use the increment write primitive to enable an arbitrary read primitive

Use the read primitive to read SYSTEM token

Use the write primitive to adjust our EPROCESS token to SYSTEM

Caveats: If EPROCESS token is read during our slow adjustment, we BSOD

If Task Manager is running

If Process Explorer is running

© NCC Group 2019
93 / 101

Exploiting Windows 10 1809 x86/x64

Use read primitive to find SYSTEM process token

Patch process _KPROCESS struct

Bypassing kernel CFG wasn't investigated

But primitives should make it doable

Only major x64 and x86 differences is structure sizes and offset

Except for the following thing to come...

Relatively easy to port to all versions back to Vista

© NCC Group 2019
94 / 101

Bonus - BlueHat Shanghai May 2019

© NCC Group 2019
95 / 101

Bonus - The invisible paper

Turns out Kaspersky presented on this in May 2019

Explains some of what we just described

Found after we got accepted to speak at POC2019

win32k syscall filter search keywords found it by accident

Searching CVE-2018-8611 or KTM did not

Actually quite happy in the end we never saw it!

Most interesting highlight

0day exploit used multiple different approaches from us

© NCC Group 2019
96 / 101

Bonus - Race winning

0day didn't use same trap enlistment approach to detect race win

Used Event Notification object to trap kernel on KeWaitForSingleObject()

Swap object type after detection

Modified mutex allows write 0 primitive (similar code path to ours)

Positives

It's interesting to see a different approach

Negatives

Must modify every mutex that gets touched by loop

More complicated than our primitive

© NCC Group 2019
97 / 101

Bonus - Write primitive: No increment, write 0 only

0day didn't use the increment primitive either!

Abused an earlier write 0 in same KeReleaseMutex() code path

Writes a sizeof(void *) 0 value to any address

Least significant bit must already be 0 to avoid deadlock

Positives

Reduced setup complexity

Negatives

Doesn't actually work on all OS versions (Vista x64, Vista/7 x86)

Situationally less powerful primitive

© NCC Group 2019
98 / 101

Bonus - What to write with 0?

0day targeted KTHREAD.PreviousMode field

First documented by Tarjei Mandt in 2011

Misaligned write to this field allows setting to 0

Unrestricted NtReadVirtualMemory() and NtWriteVirtualMemory()

Arbitrary kernel read/write

Positives:

Super powerful

Possibly first in-the-wild use?

Negatives

Doesn't really work on x86 (we will explain why in blog series)

© NCC Group 2019
99 / 101

Conclusion

Quite reliably exploitable race condition leading to UAF

Very interesting and fun to exploit

Should be usable to bypass most kernel mitigations (if necessary)

KASLR, SMEP, CFG, etc.

Our approach differed significantly from 0day

Both methods have a lot of value!

Tons of details still missing

Follow up 5 part blog series coming soon after POC2019

© NCC Group 2019
100 / 101

Questions?

Aaron Adams - @fidgetingbits, aaron.adams@nccgroup.com

© NCC Group 2019
101 / 101

