
macOS IPC MitM
Samuel Groß (@5aelo)

https://twitter.com/5aelo


Agenda

1. Apple's OS Architecture and IPC


2. CVE-2018-4237 (Pwn2Own 2018)


3. Exploit 1: user -> root


4. Exploit 2: root -> kernel


5. Demo Safari 
WebContent

User 
Payload

CVE-2018-4233
CVE-2018-4404

Root 
Payload

Exploit 1

Exploit 2

Kernel 
Payload

Sandboxed

We are here

https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://saelo.github.io/presentations/bits_of_launchd.pdf


!3

/home/bob/secrets.txt rw-rw----

Alice

Kernel
Kernel: 
• Manages all resources

• Performs access control

• Runs fully privileged

"Classic" OS Design



!4

/home/bob/secrets.txt rw-rw----

???

???

Alice

Kernel
Kernel: 
• Manages all resources

• Performs access control

• Runs fully privileged

"Classic" OS Design

open("/home/bob/secrets.txt", O_RDONLY)



!5

/home/bob/secrets.txt rw-rw----

open("/home/bob/secrets.txt", O_RDONLY)

Alice

Kernel
Kernel: 
• Manages all resources

• Performs access control

• Runs fully privileged

Compare request bits (r--) with 
access bits for that user (---)

EACCESS!

"Classic" OS Design



!6

Userspace Resources
Wanted: resource management in userspace


• Cloud documents, contacts, UI events, clipboard, preferences, keychain, ... are all 
userspace "resources"


Benefits of managing things in userspace:


• Userspace code probably easier to write than kernel code


• Access to memory safe languages (e.g. Swift on macOS)


• Small, restricted services that can be sandboxed to only have access to the 
resources they need


• Synchronized access easy: (single-threaded) daemon handling requests



Preferences

• Preferences = persistent, per 
application key:value pairs


• "Resource" managed in 
userspace, by cfprefsd


• Programatic access: CF 
Preferences


• CLI access: defaults

> defaults write net.saelo.hax foo bar 
> defaults read net.saelo.hax 
{ 
    foo = bar; 
} 
> plutil -p ~/Library/\ 
Preferences/net.saelo.hax.plist 
{ 
  "foo" => "bar" 
}



Preferences

Client

Goal: write/update a preference



Preferences

cfprefsd
Client

Goal: write/update a preference
cfprefsd: 
• Manages one resource

• Performs access control


• E.g. denies access to sandboxed clients

• Runs as user, can be sandboxed



Preferences

cfprefsd
Client

pref_write("net.saelo.hax", "foo", "bar")

"Ok"

cfprefsd: 
• Manages one resource

• Performs access control


• E.g. denies access to sandboxed clients

• Runs as user, can be sandboxed



Preferences

cfprefsd
Client

pref_write("net.saelo.hax", "foo", "bar")

"Ok"

mach messages
cfprefsd: 
• Manages one resource

• Performs access control


• E.g. denies access to sandboxed clients

• Runs as user, can be sandboxed



Mach Messaging
• Fundamental IPC mechanism in 

Darwin: mach messages


• Based on mach ports: 
unidirectional, mailbox-style IPC


• Sender needs a send right to a 
mach port for which the service 
process owns the receive right 

• Send-once right to another mach 
port can be attached to a message 
to receive a reply

cfprefsd

Client

mach port in kernel

(unique) receive right: 
can receive messages 

sent to the port send right: 
can send messages 

to the port

Communication 
possible



XPC
• IPC protocol built on top of 

mach messages


• Supports sending key:value 
dictionaries


• XPC connection consists of two 
mach ports: one for sending, 
one for receiving


• Reply ports (send-once right 
attached to message) still used 
when reply expected (e.g. RPC)

cfprefsd ClientCommunication 
possible

Receive right Receive right

Send rights



Service Management

cfprefsd
Client

Question: how can client "find" cfprefsd?

mach port required here?!



Service Management

launchd

cfprefsd
Client

launchd: 
• Init process (pid 1)

• Manages IPC services


• Every service registers with launchd

• Highly privileged



Service Management

bootstrap_look_up("cfprefsd")launchd

cfprefsd
Client



Service Management

bootstrap_look_up("cfprefsd")launchd

cfprefsd
Client

mach port  
0x4237



Service Management

launchd

cfprefsd
Client

pref_write("net.saelo.hax", "foo", "bar")



Service Management

launchd

cfprefsd
Client

"Ok"

pref_write("net.saelo.hax", "foo", "bar")



Task Special Ports 
• Problem: how can a process 

communicate with launchd in 
the first place?


• Solution: one of the task special 
ports, the bootstrap port, is 
connected to launchd


    => Messages sent to the

    bootstrap port will arrive in

    launchd

typedef int task_special_port_t; 

#define TASK_KERNEL_PORT          1 
#define TASK_HOST_PORT            2 
#define TASK_NAME_PORT            3 
#define TASK_BOOTSTRAP_PORT       4 
#define TASK_SEATBELT_PORT        7 
#define TASK_ACCESS_PORT          9 
#define TASK_DEBUG_CONTROL_PORT   10 
#define TASK_RESOURCE_NOTIFY_PORT 11



task_set_special_port
• task_set_special_port API 

allows overwriting special ports, 
including the bootstrap port


• Overwritten bootstrap port not 
restored during fork() or execve()


•  🤔 

• Spawn privileged child process (e.g. a 
setuid binary) and intercept IPC?


      => CVE-2018-4237

/* 
 * Set one of the special ports  
 * associated with the target task. 
 */ 
routine task_set_special_port( 
  task         : task_t; 
  which_port   : int; 
  special_port : mach_port_t 
);



task_set_special_port
• task_set_special_port API 

allows overwriting special ports, 
including the bootstrap port


• Overwritten bootstrap port not 
restored during fork() or execve()


•  🤔 

• Spawn privileged child process (e.g. a 
setuid binary) and intercept IPC?


      => CVE-2018-4237

/* 
 * Set one of the special ports  
 * associated with the target task. 
 */ 
routine task_set_special_port( 
  task         : task_t; 
  which_port   : int; 
  special_port : mach_port_t 
);

* Fun sidenote: exploit basically described in https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html

https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html


CVE-2018-4237
• Security bug: child process can be more privileged than parent


• Due to setuid bit being set (child runs as root)


• Or due to entitlements


• Primitive: can intercept messages sent to launchd (bootstrap port)


• Idea: intercept endpoint lookups and reply with controlled mach port


             => IPC man-in-the-middle

daemon

victim 
(child, uid 0)hax 

(uid 501)

Intended communication

Actual communication



Normal Sudo

launchd

opendirectoryd

sudo

> sudo whoami 
Password: 
root

What happens here?

(Manages user credentials)



Normal Sudo

launchd

opendirectoryd

sudo

bootstrap_look_up("opendirectoryd");

(Manages user credentials)

mach port  
0x2076



Normal Sudo

launchd

opendirectoryd

sudo
(Manages user credentials)

"Is 'hunter2' the correct password for user 501?"

"Yes!"



Exploit 1 - Idea

• MitM XPC connection between sudo (child process) and opendirectoryd


• Send arbitrary password to sudo over stdin


        => sudo will send password to opendirectoryd for verification


• Intercept reply from opendirectoryd to indicate that password is valid 



Exploit 1 - Idea

hax

sudo

bootstrap_look_up("opendirectoryd");

mach port  
0x2076

Port to which attacker process has a receive right

launchd



Exploit 1 - Idea

hax

sudo

"Yes!"

launchd

"Is 'foobar' the correct password for user 501?"



Callstack
bootstrap_look_up

bootstrap_look_up3

xpc_bootstrap_routine

xpc_interface_routine



Callstack
bootstrap_look_up

bootstrap_look_up3

xpc_bootstrap_routine

xpc_interface_routine

int xpc_interface_routine(int subsystem, int routine, 
    xpc_dictionary_t msg, xpc_dictionary_t* out) 
{ 
  ...; 
  xpc_dictionary_set_uint64(msg, "subsystem", subsystem); 
  xpc_dictionary_set_uint64(msg, "routine", routine); 
  r = xpc_pipe_routine(msg, &response); 
  if (!r) { 
    xpc_dictionary_get_audit_token(response, &token); 
    if (token.pid != 1 || token.euid) { 
      return 118; 
    } 
    ...; 
}



Callstack
bootstrap_look_up

bootstrap_look_up3

xpc_bootstrap_routine

xpc_interface_routine

int xpc_interface_routine(int subsystem, int routine, 
    xpc_dictionary_t msg, xpc_dictionary_t* out) 
{ 
  ...; 
  xpc_dictionary_set_uint64(msg, "subsystem", subsystem); 
  xpc_dictionary_set_uint64(msg, "routine", routine); 
  r = xpc_pipe_routine(msg, &response); 
  if (!r) { 
    xpc_dictionary_get_audit_token(response, &token); 
    if (token.pid != 1 || token.euid) { 
      return 118; 
    } 
    ...; 
} 😞



Problem
Problem: victim (libxpc) verifies that reply came from launchd (pid == 1, uid == 0)


Solution:


1. Register endpoint, e.g. "net.saelo.hax", with launchd via bootstrap_register 

2. Intercept lookup requests from victim to launchd and


1. Change endpoint name to "net.saelo.hax"


2. Leave original reply port intact!


3. Forward to launchd


     => launchd will reply directly to victim process with controlled IPC port!

XPC Packet 

• Sender Port 
• Reply Port (!) 
• Message ID 
• Serialized Message



Passwordless Sudo

launchd

hax



Passwordless Sudo

launchd

hax

bootstrap_look_up("saelo.hax");



Passwordless Sudo

launchd

hax

sudo
1. mach_port_allocate(&p) 
2. task_set_special_port(TASK_BOOTSTRAP_PORT, p) 
3. fork() 
4. execve("/usr/bin/sudo")



Passwordless Sudo

launchd

hax

sudo

"Password: "

"lol_idk :D"



Passwordless Sudo

launchd

hax

sudo

bootstrap_look_up("opendirectoryd");



Passwordless Sudo

launchd

hax

sudo

bootstrap_look_up("opendirectoryd");

Forward message to launchd with modified 
endpoint name but original reply port!

bootstrap_look_up("saelo.hax");



Passwordless Sudo

launchd

hax

sudo

bootstrap_look_up("opendirectoryd");

bootstrap_look_up("saelo.hax");

Port 0x1234



Passwordless Sudo

launchd

hax

sudo

bootstrap_look_up("opendirectoryd");

bootstrap_look_up("saelo.hax");

Port 0x1234

reply.uid == 0  ✔ 

reply.pid == 1  ✔



Passwordless Sudo

launchd

hax

sudo

"Is 'lol_idk :D' the correct password for user 501?"



Passwordless Sudo

launchd

hax

sudo

"Is 'lol_idk :D' the correct password for user 501?"

"Yes!" 😎



Status
• Have root privileges now \o/


• Goal: get into kernel


• On macOS: root -> kernel is a privilege 
boundary since introduction of SIP


• Loading kernel modules requires 
com.apple.rootless.kext-
management entitlement


• Possessed e.g. by /usr/bin/kextutil*

* See http://newosxbook.com/ent.jl?ent=com.apple.rootless.kext-management&osVer=MacOS13

Safari 
WebContent

User 
Payload

Root 
Payload

Exploit 1

Exploit 2

Kernel 
Payload

Sandboxed

We are now here

http://newosxbook.com/ent.jl?ent=com.apple.rootless.kext-management&osVer=MacOS13


kextutil

• Tool used to load kernel extensions ("kext") into the kernel


• Kext will only be loaded if:


• kextutil is running as root ✔


• The kext has a valid signature


• The signature chain is rooted in an apple certificate


• The kext has been approved by the user (https://developer.apple.com/
library/archive/technotes/tn2459/_index.html)

https://developer.apple.com/library/archive/technotes/tn2459/_index.html
https://developer.apple.com/library/archive/technotes/tn2459/_index.html
https://developer.apple.com/library/archive/technotes/tn2459/_index.html


Signature Verification
kextutil verification steps:


1. Extract the certificate from the 
provided kext bundle


2. Verify that the kext is signed 
with the attached certificate


3. Ask trustd to retrieve and 
validate the certificate chain 
from the supplied certificate


4. Verify that the certificate chain 
returned from trustd is 
anchored in an apple certificate



Signature Verification
kextutil verification steps:


1. Extract the certificate from the 
provided kext bundle


2. Verify that the kext is signed 
with the attached certificate


3. Ask trustd to retrieve and 
validate the certificate chain 
from the supplied certificate


4. Verify that the certificate chain 
returned from trustd is 
anchored in an apple certificate

MitM this communication

Use a self-signed certificate here

Return a completely different (!) 
certificate chain here from an 

official apple kext



Tricking kextutil

launchd

hax

kextutil

... same setup as before



Tricking kextutil

launchd

hax

kextutil

bootstrap_look_up("trustd");

bootstrap_look_up("saelo.hax2");

Port 0x1234



Tricking kextutil

launchd

hax

kextutil

"Please retrieve and verify the certificate chain for this certificate here"



Tricking kextutil

launchd

hax

kextutil

"Please retrieve and verify the certificate chain for this certificate"

"Here you go" 😎

Certificate Chain

Apple Root CA

Apple Code Signing Certification Authority

Software Signing

A Self-Signed Certificate



kextutil
• Tool used to load kernel extensions ("kext") into the kernel


• Kext will only be loaded if:


• kextutil is running as root ✔


• The kext has a valid signature ✔


• The signature chain is rooted in an apple certificate ✔


• The kext has been approved by the user (https://developer.apple.com/
library/archive/technotes/tn2459/_index.html)

https://developer.apple.com/library/archive/technotes/tn2459/_index.html
https://developer.apple.com/library/archive/technotes/tn2459/_index.html
https://developer.apple.com/library/archive/technotes/tn2459/_index.html


User-Approved Kext Loading

"macOS High Sierra 10.13 introduces a new feature that requires user 
approval before loading newly-installed third-party kernel extensions 
(KEXTs). When a request is made to load a KEXT that the user has not yet 
approved, the load request is denied."

syspolicyd

kextutil

"Has this kext been approved for loading by the user yet?"



User-Approved Kext Loading
• Either spoof reply from syspolicyd


• Or prevent mach lookup of syspolicyd, in which case kextutil will also 
load the kext


• For backward compatibility maybe?

syspolicyd

kextutil

"Has this kext been approved for loading by the user yet?"



Tricking kextutil

launchd

hax

kextutil

bootstrap_look_up("syspolicyd");

bootstrap_look_up("nonexistant");

error 3



Demo

!56

https://youtu.be/63MKVqdEJ6k

https://youtu.be/63MKVqdEJ6k


libspc
• Hacky reimplementation of XPC protocol


• Quite flexible, supports most relevant features


• Used to e.g. implement XPC intercepting and bridging for the exploits
while (1) { 
    spc_message_t* msg = spc_recv(bridge->receive_port); 

    msg->local_port.name = MACH_PORT_NULL; 
    msg->remote_port.name = bridge->send_port; 
    // Hack: replace "error: 5000" with "error: 0" to indicate success 
    spc_dictionary_item_t* item = spc_dictionary_lookup(msg->content, "error"); 
    if (item) 
        item->value.value.u64 = 0; 

    spc_send(msg); 
    spc_message_destroy(msg); 
}



Summary

• OS's have gotten more complex


• Fun logic bugs out there


• Powerful exploitation possible with IPC bugs


• Full Pwn2Own exploit chain @ https://github.com/saelo/pwn2own2018

https://github.com/saelo/pwn2own2018


References

• libxpc.dylib and https://opensource.apple.com/source/xnu/


• https://developer.apple.com/library/archive/documentation/Darwin/
Conceptual/KernelProgramming/Mach/Mach.html


• https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf


• https://github.com/bazad/blanket


• https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html

https://opensource.apple.com/source/xnu/
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/Mach/Mach.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/Mach/Mach.html
https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
https://github.com/bazad/blanket
https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html

