
Pwning Microsoft Edge Browser: From Memory
Safety Vulnerability to Remote Code Execution  

Jin Liu, Chong Xu
McAfee

Abstract 

In the past few years, the attack and defense of vulnerability
exploitation have rapidly evolved, especially for those high-risk
applications, such as Microsoft Edge browser. Many new mitigation
features have been introduced to Edge browser and Windows
operating system, such as CFG, ACG and Win32K Type Isolation.
Although these mitigations do help raise the bar for the exploit
writer, this cat-and-mouse game is far from over. In this talk, we will
present several interesting examples of vulnerability and exploitation
techniques, and discuss how to make reliable Edge RCE exploit on
Windows 10 x64.

Speaker Profiles  

! Jin Liu - Jin Liu is a security researcher of McAfee IPS Research Team. Jin
focuses on security research. He specializes in vulnerability and advanced
exploitation technique analysis, especially in browser vulnerability research
on Windows platform.

! Chong Xu - Chong Xu received his PhD degree from Duke University with
networking and security focus. He is currently a director leading McAfee
Labs IPS team, which leads the McAfee Labs vulnerability research, malware
and APT detection, botnet detection, and feeds security content and advanced
detection features to McAfee's network IPS, host IPS, and firewall products,
as well as global threat intelligence.

Agenda 
! The Common Edge Browser Exploitation Chain
! Achieve User Mode Arbitrary Address Read/Write (AAR/W)
! Bypass Security Mitigation
! Achieve Kernel Escalation of Privilege (EoP)
! Attack Demo
! Conclusion
! Q & A and Acknowledgement
! References

The Common Edge Browser Exploitation Chain

Arbitrary
address read and

write in user-
mode

• Exploit
vulnerabilities to
achieve AAR/W in
Edge browser’s
AppContainer
process

Bypass security
mitigation

• ASLR, DEP
• CFG,ACG,CIG
• Win32k filter
• Etc.

Arbitrary
address read and
write in kernel-

mode
• Ntoskrnl & Win32k

& DirectX
vulnerabilities

• Win32K Type
Isolation, SMEP

• Etc.

RCE with
system privilege

• Steal System token
• Execute shell/

payload

Achieve User Mode Arbitrary Address Read/Write through Edge Browser Vulnerabilities(CVE-2018-1025)  

! (Pwn2Own 2018) Microsoft Edge WebGL ImageData Use-After-Free Information
Disclosure Vulnerability

CVE ID CVE-2018-1025

AFFECTED PRODUCTS Edge

VULNERABILITY DETAILS This vulnerability allows remote attackers to disclose sensitive information on
vulnerable installations of Microsoft Edge. User interaction is required to exploit this
vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the handling of ImageData objects in WebGL. By
performing actions in JavaScript an attacker can cause a pointer to be reused after it has
been freed. An attacker can leverage this in conjunction with other vulnerabilities to
execute arbitrary code in the context of the current process.

ADDITIONAL DETAILS Microsoft has issued an update to correct this vulnerability. More details can be found
at:  
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-1025

CREDIT Richard Zhu (fluorescence)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1025
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-1025

Achieve User Mode Arbitrary Address Read/Write - The
Vulnerable Component

!WebGL (Web Graphics Library) is a JavaScript API for
rendering interactive 3D and 2D graphics within any
compatible web browser without the use of plug-ins.
WebGL does so by introducing an API that closely
conforms to OpenGL ES 2.0 that can be used in HTML5
<canvas> elements.

The vulnerability exists when the constructor
initializes the ImageData object by importing a
TypedArray Object. The problematic function is
rewritten.

Achieve User Mode Arbitrary Address Read/Write - Patch Diff on
CCanvasImageData::InitializeFromUint8ClampedArray

Achieve User Mode Arbitrary Address Read/Write – An Instance of CCanvasImageData Object in Memory

var canvasobj = new ImageData(Uint8ClampedArray)

This “new” JS operator internally calls InitializeFromUint8ClampedArray function when its parameter is a
Uint8ClampedArray object.
The created CanvasImageData object has a pointer to the buffer member of Uint8ClampedArray object.

ImageData(Uint8ClampedArr
ay)

InitializeFromUint8Clamped
Array

Uint8ClampedArray.buffer

CanvasImageData object

Free&GC&Reclaim

New Object

WebGL API
related function

Construct

Calls

Free & occupy

Reference

Release and occupy

Retrieve the content of new
object

Achieve User Mode Arbitrary Address Read/Write - ImageData Use-After-Free Vulnerability Exploitation Process

Extract

Reuse

Achieve User Mode Arbitrary Address Read/Write – Reclaim the Freed Memory with a JS Object

The buffer of TypedArray
object

Occupied by a JavascriptNativeIntArray object

Achieve User Mode Arbitrary Address Read/Write - Leak the Content of a JS Object
Using WebGL API

………
var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
var fb = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);
………
var imageData = new ImageData(ta, dimension, dimension);
………
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat, format, type, imageData);
// texImage2D API can associate the ImageData object with the WebGL texture object.
ta1 = new Uint8Array(buffersize);
gl.readPixels(0, 0, dimension, dimension, gl.RGBA, gl.UNSIGNED_BYTE, ta1);
//ReadPixels API can indirectly retrieve the content of the new object on the freed memory.

Achieve User Mode Arbitrary Address Read/Write - Leak the JS Object’s Vftable Using WebGL API

Now we have the address of JavascriptNativeIntArray object’s vftable, thus the base address
of Chakra.dll module.

Achieve User Mode Arbitrary Address Read/Write -WebRTC UAF Vulnerability (CVE-2018-8179)

! (Pwn2Own 2018) Microsoft Edge WebRTC Parameters Use-After-Free Remote Code
Execution Vulnerability

CVE ID CVE-2018-8179

AFFECTED PRODUCTS Edge

VULNERABILITY DETAILS This vulnerability allows remote attackers to execute arbitrary code on vulnerable
installations of Microsoft Edge. User interaction is required to exploit this
vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of parameters to WebRTC APIs. By
performing actions in JavaScript an attacker can cause a pointer to be reused after
it has been freed. An attacker can leverage this vulnerability to execute code under
the context of the current process.

ADDITIONAL DETAILS Microsoft has issued an update to correct this vulnerability. More details can be
found at:  
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/
CVE-2018-8179

CREDIT Richard Zhu (fluorescence)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8179
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8179

Achieve User Mode Arbitrary Address Read/Write - The
Vulnerable Component

! WebRTC is an open framework for the web that enables Real Time
Communications in the browser. It includes the fundamental building
blocks for high-quality communications on the web, such as network,
audio and video components used in voice and video chat applications.

Achieve User Mode Arbitrary Address Read/Write - Patch Diff on
ORTC::UnpackArrayObjectVar

The patch introduced some new
functions
• CJScript9Holder::VarAddRef
• CJScript9Holder::VarRelease
• ORTC::ClearModernArrayVarsIf

Necessary

Achieve User Mode Arbitrary Address Read/Write - Patch
Analysis

!Before each JS object is saved in CModernArray, function
ORTC::UnpackArrayObjectVar calls
CJScript9Holder::VarAddRef to add a reference for it.

!When releasing these JS objects saved in CModernArray,
function ORTC::ClearModernArrayVarsIfNecessary calls
CJScript9Holder::VarRelease to release the previously added
references.

!An attacker can release JS object via a user defined callback
function in ORTC::UnpackArrayObjectVar function, which
could lead to a UAF condition.

Achieve User Mode Arbitrary Address Read/Write - Vulnerability Root Cause

UnpackArrayObjectVar unpacks a JavascriptArray, which contains an array of JS objects.
The pointers of these JS objects are saved in an internal CModernArray structure.

setRemoteCandidates

Achieve User Mode Arbitrary Address Read/Write - WebRTC UAF Vulnerability
Exploitation Process

UnpackRTCIceCanadidat
esFromVar

Call

UnpackArrayObjectVar

Call

Call

User Callback

JS Var Array
Pass in

Unpack Array

CModernArray

Save obj ptr

Fake Virtual func

Refer

Refer

Free & GC &
Reclaim

JS Dict obj

JS Dict obj

JS Dict obj

Fake obj

Int Array obj

Unpack dict obj

Type confusion

Hijack to
modify

Allow
OOB R/
W

reuse

Achieve User Mode Arbitrary Address Read/Write - How to Free
& Reclaim the Memory

! Define a callback function
to be invoked during the
unpack operation. In the
callback function, the saved
JS objects will be freed.

! Then allocate a large
number of
JavascriptNativeIntArray
objects to reclaim the
memory previously
occupied by the freed JS
objects.

The original JS object

Part of JavascriptNativeIntArray’s
segment, where we can place a fake
object.

The beginning of the next
JavascriptNativeIntArray
object

Achieve User Mode Arbitrary Address Read/Write - Fake a Vftable to
Corrupt a JavascriptNativeIntArray Object

! To achieve OOB read/write, we
need to corrupt a
JavascriptNativeIntArray
object via type confusion. We
fake a vftable to hijack the
virtual function call.

! The subsequent processing of
setRemoteCandidates function
will be hijacked to call the
specific function
RegisterTrackingClient, which
can be used to corrupt a
JavascriptNativeIntArray
object.

RegisterTrackingClient results in rcx+68 equal
to rcx.

Achieve User Mode Arbitrary Address Read/Write - Fake a Type to Pass the JS Object Type
Check

! In subsequent processing of
setRemoteCanadites, the
function GetScriptType
checks the following
conditions
" The first four bytes of typeID

should be less than 0x4e
" The object’s typeID should

make var_110 equal to five
" The 5th byte of type is used to

avoid touching the function
GetPrototypeNoTrap

Achieve User Mode Arbitrary Address Read/Write - How to Use the Capability of
"(fakeobj+0x68) = fakeobj”

! We can align fake object +
0x68 to the position of the
segment head of the next
JavascriptNativeIntArray
object, which will then point to
the area that we can fully
control.

RegisterTrackingClient makes the segment
head point back to the data portion of the
previous JavascriptNativeIntArray object.

The corrupted segment will
allow out of bound read/write,
then we can achieve AAR/W by
faking a DataView object.

Achieve User Mode Arbitrary Address Read/Write - How to Leak the Address of a JS Object

Save the vftable and the
type of

JavascriptNativeIntArray

Save the JS object you
want to leak in the

JavascriptNativeIntArray

Restore the original
vftable and type of

JavascriptNativeIntArray

Leak the JS object address
from the two

corresponding elements of
the

JavascriptNativeIntArray

Achieve User Mode Arbitrary Address Read/Write - How to Achieve OOB Array Access

! In interpret mode, the accessing index is compared against the array
length. If the index is greater than or equal to the length, the access is
denied.

! However, in JIT mode, the optimized JITed code compares the accessing
array index with the segment size instead of the array length.

Achieve User Mode Arbitrary Address Read/Write – the Full Exploitation
Process

Create a JS Array containing a number
of JS dictionary typed objects of certain

size.

Set a getter callback on certain index of
the JS Array

Call setRemoteCandidates passing in
the JS Array

Once the callback function is
called, release all elements in the

JS Array to trigger the
vulnerability

Call garbage collection, allocate a
certain number of integer array

objects to reclaim the freed
memory

Craft an object in the data area of
each integer array object. The
vftable and type of the crafted

objects come from address
information leaked from another

vulnerability.

Upon successful memory reclaim, the
subsequent execution of setRemoteCandidates

attempts to operate on the crafted object,
introducing type confusion. Such a type

confusion causes the segment head of next
integer array object points back to the crafted

object itself.

Converts the crafted object into a
segment with a large size and length, so
that the following integer array object

gains the ability of OOB read and write.

Traverse all the integer array objects to
find the one that has OOB read and

write capability. Create a faked
DataView object after that to achieve

AAR/W

" Arbitrary Code Guard (ACG)
!Prevents a process from generating dynamic code or modifying existing executable code. Two

W^X policies:
" Existing code pages cannot be made writable
" New, unsigned code pages cannot be created

" Code Integrity Guard (CIG)
!ProcessSignaturePolicy prevents a process from loading unsigned images.
! In addition, ProcessImageLoadPolicy and CHILD_PROCESS_POLICY are used to prevent

loading untrusted images.
" Control Flow Guard (CFG)

!Prevents an exploit from hijacking the program’s control flow.
!The call target check is enforced at each indirect control transfer instruction (call and jmp). The

check is performed by routines in ntdll.dll (LdrpValidateUserCallTarget,
LdrpDispatchUserCallTarget etc). CFG does not protect control transfers via “ret.”

Bypass Security Mitigation – Mitigation for Edge Browser

Bypass Security Mitigation - Use Javascript to Achieve Arbitrary Code Execution (ACG/CIG Bypass)

! toolkit.js
"An exploitation framework that implements calling system API from JS layer with

the ability of controlling all arguments and obtaining the return value.
"https://github.com/mxatone/mitigation-bounty
"But this framework can only call CFG-friendly function.
"We enhanced it to allow calling arbitrary system API by disarming the CFG check in

rpcrt4 module.
!pwn.js

"Another JS based exploitation framework that allows calling system API via ROP
technique.

"https://github.com/theori-io/pwnjs

https://github.com/mxatone/mitigation-bounty
https://github.com/theori-io/pwnjs

Bypass Security Mitigation - CFG Bypass

A CFG bypass issue was found in chakra!
JS::JavascriptFunction::CallAsmJSFunction

The function pointer will be saved on stack
temporarily before it is called. Within this
small time window, it is subject to a race
condition attack.………..

At the end of CallAsmJSFunction, this
function pointer get called.

A CFG check is enforced to make sure
the call target is valid.

Bypass Security Mitigation – the Flow Chart of Race Condition Attack

New JS worker
Leak worker thread stack and
locate the func ptr on stack

Find

Start Race Condition
(Keep writing)

Call func ptrCFG check on func ptr

Main JS thread

Worker thread

Create

Stack of worker thread

func ptr Rewrite

Argument preparation

Push func ptr

Loop
Control flow hijacked to
an arbitrary address (to
execute ROP chain)

Pop func ptr

Time window for attack

Bypass Security Mitigation - Execute ROP Chain

Stack pivot, rdx points to a memory location that we
control
(“xchg rsp,rxx/ret” sequence is hard to find on x64.)

A fake stack for ROP

Bypass Security Mitigation - Execute ROP Chain

! But what if we can’t control any register, how can we achieve stack
pivot?

! If we can put the ROP data somewhere on the current thread stack,
our ROP chain will be able to directly consume these data without
the need of stack pivot.

! Use instructions such as “sub/add rsp,xxx” to locate the ROP data we
put on the current stack.

Bypass Security Mitigation - Demo of CFG Bypass via a Race Condition
Attack

In this demo, we use ROP chain to leak the system IDT address.

Bypass Security Mitigation - Patch on
JS::JavascriptFunction::CallAsmJSFunction

In Windows10 RS4, Microsoft
rewrote function
JS::JavascriptFunction::CallAsmJ
SFunction

 CallAsmJSFunction uses dispatch
mode CFG check to call the target
function.

We can no longer conduct the race
condition attack.

Achieve Kernel Escalation of Privilege - How to Escalate to System Privilege

Achieve Arbitrary Read/Write through Edge Browser Vulnerabilities

CVE-2018-1025
CVE-2018-8179
Fake a DataView
Object to achieve
AAR/AAW

Bypass Security Mitigation

Use toolkit.js to bypass
ACG/CIG
Hijack function pointer
in CallAsmJSFunction
to bypass CFG.

What’s Next?

We can exploit a kernel
mode vulnerability to
escalate to system
privilege.

Achieve Kernel Escalation of Privilege - Kernel Mode Vulnerability
(CVE-2018-8165)

! (Pwn2Own 2018) Microsoft Windows DirectX Integer Overflow Privilege Escalation
Vulnerability

CVE ID CVE-2018-8165

AFFECTED PRODUCTS Windows

VULNERABILITY DETAILS This vulnerability allows local attackers to escalate privileges on
vulnerable installations of Microsoft Windows. An attacker must
first obtain the ability to execute low-privileged code on the target
system in order to exploit this vulnerability.
The specific flaw exists within the DirectX graphics kernel driver,
dxgkrnl.sys. The issue results from the lack of proper validation of
user-supplied data, which can result in an integer overflow before
allocating a buffer. An attacker can leverage this vulnerability to
escalate privileges to the level of SYSTEM.

ADDITIONAL DETAILS Microsoft has issued an update to correct this vulnerability. More
details can be found at:  
https://portal.msrc.microsoft.com/en-US/security-guidance/
advisory/CVE-2018-8165

CREDIT Richard Zhu (fluorescence)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8165
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8165

Achieve Kernel Escalation of Privilege - The Vulnerable Component

Dxgkrnl.sys is DirectX Graphics Kernel Driver. It provides DxgInterfaces.
The D3DKMTPresent function submits a present command to the Microsoft DirectX graphics kernel subsystem (Dxgkrnl.sys).

typedef struct _D3DKMT_PRESENT {
 union {

 D3DKMT_HANDLE hDevice;
 D3DKMT_HANDLE hContext;
 };

…………
 UINT PrivateDriverDataSize;
 PVOID pPrivateDriverData;
 BOOLEAN bOptimizeForComposition;

} D3DKMT_PRESENT;

Achieve Kernel Escalation of Privilege - Patch Diff on ReadPresentPrivateDriverData

! Two patched functions with the same name ReadPresentPrivateDriverData can be
triggered from different paths.

! ReadPresentPrivateDriverData(DXGADAPTER *,uint,void *,CRefCountedBuffer * *)
! ReadPresentPrivateDriverData(DXGADAPTER

*,_D3DKMT_MULTIPLANE_OVERLAY3 const *,CRefCountedBuffer * *)

! We will take the first attack path.

Achieve Kernel Escalation of Privilege - Patch Diff on
ReadPresentPrivateDriverData

Before patched, ReadPresentPrivateDriverData
uses function ExAllocatePoolWithTag to allocate
memory; the allocated size is rdi + 8, which has a
potential integer overflow condition.

After patched, ReadPresentPrivateDriverData uses
a new function
CRefCountedBuffer::AllocateRefCountedBuffer to
allocate memory
The new function ensures that rbx+8 is greater
than rbx to prevent an integer overflow.

Achieve Kernel Escalation of Privilege - How to Achieve OOB Write in Kernel

! A potential integer overflow vulnerability exists in function ReadPresentPrivateDriverData.
! If the size value is close to 0xffffffff, adding 8 results in ExAllocatePoolWithTag allocating a

very small size of NonPagedPoolNx pool.

rdi comes from the field PrivateDriverDataSize of struct D3DKMTPRESENT, which
we can control. In this case, rdi = 0xffffffff edx = rdi+8, so ExAllocatePoolWithTag will
allocate a memory block of size 7.

+8 overflew

! The subsequent memove copies data of huge size (close to 0xffffffff) to the destination buffer.
The data copied, which comes from pPrivateDriverData field, are under our control.

The size of copied
data is huge(r8 =
0xffffffff), but the
destination buffer is
very small.

Achieve Kernel Escalation of Privilege - How to Achieve OOB Write
in Kernel

! By leveraging kernel pool fengshui technique, we can convert this
OOB vulnerability into a kernel AAW, and further into kernel
EoP.

! Due to time constraints, we will present only a demonstration.
The details will be discussed in the future.

Achieve Kernel Escalation of Privilege - How to Exploit this OOB
Write Vulnerability

Attack Demo

A video of attack demo

///ppt/slides/demo.avi

Conclusion

Review the Steps of Edge Pwn
" Exploit CVE-2018-1025+CVE-2018-8179 to achieve AAR/AAW
" Use toolkit.js to bypass ACG/CIG
" Hijack a function pointer in CallAsmJSFunction to bypass CFG
" Exploit CVE-2018-8165 to achieve EoP

Food for Thought
" Edge browser exploitation is getting harder and harder. But exploitation may still be possible

using high quality vulnerabilities.
" Microsoft’s security mitigation has significantly raised the bar for exploitation. However, the

control flow enforcement still has room to improve.
" Kernel mitigation, such as GDI type isolation and win32k filter, makes kernel vulnerability

exploitation more difficult. In the future, we have to find new objects to achieve data-only attack
or fallback to the kernel ROP.

Q&A and Acknowledgement

! Send questions to jin_liu@mcafee.com, chong_xu@mcafee.com
! Special thanks to McAfee IPS Security Research Team

mailto:jin_liu@mcafee.com
mailto:chong_xu@mcafee.com

References

! https://www.zerodayinitiative.com/advisories/ZDI-18-612/
! https://www.zerodayinitiative.com/advisories/ZDI-18-571/
! https://www.zerodayinitiative.com/advisories/ZDI-18-572/
! https://github.com/mxatone/mitigation-bounty
! https://github.com/theori-io/pwnJS
! https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Constants
! https://developer.mozilla.org/en-US/docs/Web/API/ImageData
! https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-

_d3dkmt_present
! https://cansecwest.com/slides/2018/Shellcodes%20are%20for%20the%2099%25%20-%20Bing%20Sun,

%20Stanley%20Zhu,%20and%20Chong%20Xu,%20McAfee%20and%20Didi%20Chuxing.pdf

https://www.zerodayinitiative.com/advisories/ZDI-18-612/
https://www.zerodayinitiative.com/advisories/ZDI-18-571/
https://www.zerodayinitiative.com/advisories/ZDI-18-572/
https://github.com/mxatone/mitigation-bounty
https://github.com/theori-io/pwnjs
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Constants
https://developer.mozilla.org/en-US/docs/Web/API/ImageData
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present
https://cansecwest.com/slides/2018/Shellcodes%20are%20for%20the%2099%25%20-%20Bing%20Sun,%20Stanley%20Zhu,%20and%20Chong%20Xu,%20McAfee%20and%20Didi%20Chuxing.pdf
https://cansecwest.com/slides/2018/Shellcodes%20are%20for%20the%2099%25%20-%20Bing%20Sun,%20Stanley%20Zhu,%20and%20Chong%20Xu,%20McAfee%20and%20Didi%20Chuxing.pdf

! Thanks

