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Who is this guy

● Jaanus Kääp

● Working at Clarified Security

– Vulnerability testing, research, trainings, cyber 
excercises

● Lazy



  

Why this topic

● Got #11 in MSRC top-100

– Suprised but happy
● Then found out who is #12

– JAMES FORSHAW
● WTF?



  

Why WTF?

● Reported things found by one fuzzing script*

● Fuzzing with same logic for 3 YEARS!

– Dumb bit flipping fuzzing, nothing cool!
● My „passive income” through ZDI

● Still placed #11



  

„Research” vs Research

vs



  

Why WTF?

● Reported things found by one fuzzing script*

● Fuzzing with same logic for 3 YEARS!

– Dumb bit flipping fuzzing, nothing cool!
● My „passive income” through ZDI

● Placed #11

● Pissed me off so here we are



  

Topic itself

● Fuzzing

● My corpus distillation method

● Tools I developed

● Using with other stuff



  

Fuzzing

● Simple bit flipping

● 2-6 PC (Zotacs mostly)

– Electricity cost nothing in Estonia
● Nothing special

● Except fuzzing set



  

Fuzzing set

● As much functionality as possible

● Lazy == no protocol implementation

● Very common filetype

● Multiple parsers



  

Corpus distillation

● What you need

– Huge number of initial files

– Application that can read them

– Time and/or computing power
● What you do

– Code coverage with every input

– Analyse the coverage of all the files

– Minimize the set



  

Code coverage

● Open source – simple (special flags)

● Closed source

– Trace the code (dead slow)

– Some tools/libs: Pin, DynamoRIO

– Intel® PT*

– Write coverage tool yourself



  

Code coverage

● Basic blocks breakpoints

● First idea:

– Breakpoint to every basic block
● First implementation

– Set breakpoints

– Write down each bp-event

– Continue execution



  

How to get basic blocks

● IDA pro + IDApython

● Each basic block

– RVA from base address



  

First process

● Prep

– IDA analysis

– Basic blocks file generation
● Execution

– Insert breakpoint

– Catch 0xCC exceptions

– If in the basic block list
● Record location
● Replace 0xCC with original value
● EIP = EIP – 1 



  

First run

● Foxit software

– 611 927 breakpoint

– Conf: 8 sec wait

– 180 seconds for setup

– 30 seconds for execution

– TOTAL: ~210s/execution == 411 runs per day

● TOO SLOW



  

How to speed up?

● Most time was spent on setting breakpoints

●  What is breakpoint

– 0xCC
● Why not set them in executable?



  

How to get basicblocks

● IDA pro + IDApython

● Each basic block

– RVA from base address

– RVA/Offset in the file

– Original value



  

New process

● Prep

– IDA analysis

– Basic blocks file generation

– Modification of the exe/dll files
● Execution

– Catch 0xCC exceptions

– If in the basic block list
● Record location
● Replace 0xCC with original value
● EIP = EIP – 1 



  

Second run

● Foxit software

– 611 927 breakpoint

– Conf: 8 sec wait

– 30 seconds for execution

– TOTAL: ~30s/execution

● MUCH BETTER



  

Additional optimization

● Reducing basic blocks count

– Analyse some(100-1000) files

– Take some(1-25) files with most coverage

– Add them to final set

– Remove basicblocks covered by them



  

Third run

● Foxit software (simple example)

– <600 000 breakpoint

– Conf: 8 sec wait

– 10 seconds for execution

– TOTAL: ~10s/execution

● 25% overhead only for close source software



  

DEMO



  

How large initial set you need?



  

Google server room



  

My server room



  

Final sets

Software Initial set Final set

PDF ~1 500 000 2216

DOC ~1 500 000 1309

XLS ~1 500 000 1951

PPT ~1 500 000 1379

SWF ~1 500 000 1495*



  

How to get these files?

● Google „filetype:pdf“



  

How to get these files?



  

Additional problems

● Not real pdf files

● DDOS protection



  

Solution

● Searches

– filetype:pdf aa

– filetype:pdf ab

– filetype:pdf ac
● Not real pdf files

– Magic value - %PDF
● DDOS protection

– It's all about timing
● 48 seconds wait



  

Additional tricks

● Collecting files from multiple IPs

● Anyone here from Google?

– Please close your eyes and ears for 1-2 minute

– Possible violation of Terms of Service



  

Additional tricks

● Collect files from multiple IPs



  

Additional tricks

● Every VM gets it’s own public IP

● Even the smallest and cheapest one



  

Additional tricks

● IT gets just a bit better



  

Results & CVE-s

Vendor CVE count

Microsoft 27

Adobe 45

Apple* 2

● Bit over 2 per month

● Actually more findings - lot from Foxit

– Vendor not giving CVE-s == no CVE (pure laziness)



  

How bad against others

● Did use doc fileset to fuzz smaller office software

– Libreoffice (64bit)
● 32 bit + full page heap == crash......

– WPS office

– Polaris office
● 5days * 24hours * 16 VMs

● Microsoft & Adobe seem lot better after that



  

Unique crashes (reverified)

Software ITERATIONS NOT NULL NULL

Libreoffice ~64K(~800/day) 6 2

WPS ~256K(~3200/day) 24 7

Polaris ~120K(~1500/day) 60 47



  

Unique crashes (reverified)

Software DEP OOBR OVERFLOW UAF UNINITED ??? NULL

Libreoffice 2 2 2 2

WPS 1 14 2 1 6 7

Polaris 32 1 5 6 16 47



  

My toolset „Rehepapp”

● Analyzer tool & IDA scripts for BB list

● Tracer software

● Server for gathering data & analysis

● Scripts for file collection & coverage

● Supporting software for data modification



  

Along with others

● Input set for AFL

– Already good coverage

– WinAFL for closed stuff
● Help for RE by coverage info into IDA

– Scripts will be included in future
● Possible future work

– Replace most with Intel PT via WindowsIntelPT



  

Tools & sets

● Tool address

– https://github.com/FoxHex0ne/Rehepapp
● For POC participants only: doc fileset

– Ask from me

● Tool address

– https://github.com/FoxHex0ne/Rehepapp
● For POC participants only: doc fileset

– Ask from me

https://github.com/FoxHex0ne/Rehepapp
https://github.com/FoxHex0ne/Rehepapp


  

Q & A



  

Thank you

@FoxHex0ne

Jaanus.kaap@gmail.com
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