

Document parsers "research"
as passive income

Jaanus Kääp
Clarified Security

Who is this guy

● Jaanus Kääp

● Working at Clarified Security

– Vulnerability testing, research, trainings, cyber
excercises

● Lazy

Why this topic

● Got #11 in MSRC top-100

– Suprised but happy
● Then found out who is #12

– JAMES FORSHAW
● WTF?

Why WTF?

● Reported things found by one fuzzing script*

● Fuzzing with same logic for 3 YEARS!

– Dumb bit flipping fuzzing, nothing cool!
● My „passive income” through ZDI

● Still placed #11

„Research” vs Research

vs

Why WTF?

● Reported things found by one fuzzing script*

● Fuzzing with same logic for 3 YEARS!

– Dumb bit flipping fuzzing, nothing cool!
● My „passive income” through ZDI

● Placed #11

● Pissed me off so here we are

Topic itself

● Fuzzing

● My corpus distillation method

● Tools I developed

● Using with other stuff

Fuzzing

● Simple bit flipping

● 2-6 PC (Zotacs mostly)

– Electricity cost nothing in Estonia
● Nothing special

● Except fuzzing set

Fuzzing set

● As much functionality as possible

● Lazy == no protocol implementation

● Very common filetype

● Multiple parsers

Corpus distillation

● What you need

– Huge number of initial files

– Application that can read them

– Time and/or computing power
● What you do

– Code coverage with every input

– Analyse the coverage of all the files

– Minimize the set

Code coverage

● Open source – simple (special flags)

● Closed source

– Trace the code (dead slow)

– Some tools/libs: Pin, DynamoRIO

– Intel® PT*

– Write coverage tool yourself

Code coverage

● Basic blocks breakpoints

● First idea:

– Breakpoint to every basic block
● First implementation

– Set breakpoints

– Write down each bp-event

– Continue execution

How to get basic blocks

● IDA pro + IDApython

● Each basic block

– RVA from base address

First process

● Prep

– IDA analysis

– Basic blocks file generation
● Execution

– Insert breakpoint

– Catch 0xCC exceptions

– If in the basic block list
● Record location
● Replace 0xCC with original value
● EIP = EIP – 1

First run

● Foxit software

– 611 927 breakpoint

– Conf: 8 sec wait

– 180 seconds for setup

– 30 seconds for execution

– TOTAL: ~210s/execution == 411 runs per day

● TOO SLOW

How to speed up?

● Most time was spent on setting breakpoints

● What is breakpoint

– 0xCC
● Why not set them in executable?

How to get basicblocks

● IDA pro + IDApython

● Each basic block

– RVA from base address

– RVA/Offset in the file

– Original value

New process

● Prep

– IDA analysis

– Basic blocks file generation

– Modification of the exe/dll files
● Execution

– Catch 0xCC exceptions

– If in the basic block list
● Record location
● Replace 0xCC with original value
● EIP = EIP – 1

Second run

● Foxit software

– 611 927 breakpoint

– Conf: 8 sec wait

– 30 seconds for execution

– TOTAL: ~30s/execution

● MUCH BETTER

Additional optimization

● Reducing basic blocks count

– Analyse some(100-1000) files

– Take some(1-25) files with most coverage

– Add them to final set

– Remove basicblocks covered by them

Third run

● Foxit software (simple example)

– <600 000 breakpoint

– Conf: 8 sec wait

– 10 seconds for execution

– TOTAL: ~10s/execution

● 25% overhead only for close source software

DEMO

How large initial set you need?

Google server room

My server room

Final sets

Software Initial set Final set

PDF ~1 500 000 2216

DOC ~1 500 000 1309

XLS ~1 500 000 1951

PPT ~1 500 000 1379

SWF ~1 500 000 1495*

How to get these files?

● Google „filetype:pdf“

How to get these files?

Additional problems

● Not real pdf files

● DDOS protection

Solution

● Searches

– filetype:pdf aa

– filetype:pdf ab

– filetype:pdf ac
● Not real pdf files

– Magic value - %PDF
● DDOS protection

– It's all about timing
● 48 seconds wait

Additional tricks

● Collecting files from multiple IPs

● Anyone here from Google?

– Please close your eyes and ears for 1-2 minute

– Possible violation of Terms of Service

Additional tricks

● Collect files from multiple IPs

Additional tricks

● Every VM gets it’s own public IP

● Even the smallest and cheapest one

Additional tricks

● IT gets just a bit better

Results & CVE-s

Vendor CVE count

Microsoft 27

Adobe 45

Apple* 2

● Bit over 2 per month

● Actually more findings - lot from Foxit

– Vendor not giving CVE-s == no CVE (pure laziness)

How bad against others

● Did use doc fileset to fuzz smaller office software

– Libreoffice (64bit)
● 32 bit + full page heap == crash......

– WPS office

– Polaris office
● 5days * 24hours * 16 VMs

● Microsoft & Adobe seem lot better after that

Unique crashes (reverified)

Software ITERATIONS NOT NULL NULL

Libreoffice ~64K(~800/day) 6 2

WPS ~256K(~3200/day) 24 7

Polaris ~120K(~1500/day) 60 47

Unique crashes (reverified)

Software DEP OOBR OVERFLOW UAF UNINITED ??? NULL

Libreoffice 2 2 2 2

WPS 1 14 2 1 6 7

Polaris 32 1 5 6 16 47

My toolset „Rehepapp”

● Analyzer tool & IDA scripts for BB list

● Tracer software

● Server for gathering data & analysis

● Scripts for file collection & coverage

● Supporting software for data modification

Along with others

● Input set for AFL

– Already good coverage

– WinAFL for closed stuff
● Help for RE by coverage info into IDA

– Scripts will be included in future
● Possible future work

– Replace most with Intel PT via WindowsIntelPT

Tools & sets

● Tool address

– https://github.com/FoxHex0ne/Rehepapp
● For POC participants only: doc fileset

– Ask from me

● Tool address

– https://github.com/FoxHex0ne/Rehepapp
● For POC participants only: doc fileset

– Ask from me

https://github.com/FoxHex0ne/Rehepapp
https://github.com/FoxHex0ne/Rehepapp

Q & A

Thank you

@FoxHex0ne

Jaanus.kaap@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

