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WHAT IS VOIP
! Voice over IP - Using the IP network to route voice data 
! Networking and telecoms company supports VoIP in their 

communication products 

! Many IMs have VoIP client features 

! Android supports VoIP inherently in Telephony 

1. Why VoIP



PROTOCOLS INVOLVED



WHY VOIP

! Popularity 
! Compatibility 
! Openness



WHY VOIP IN ANDROID

! Previous research mainly focuses on VoIP server or 
VoIP Protocol security 
! Encryption 

! Authentication 

! Authorization 

! VoIP implementation in Android is seldom audited 
! VoIP embeds in Android Telephony, which is a 

privileged process (uid=1001)



FROM A HACKER’S VIEW

! Many Attack Surfaces
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FROM A HACKER’S VIEW
! Inconsistency leads to vulnerabilities, two types of inconsistencies 

! Asymmetry in two operations that should have been symmetrical , such as 
! Malloc, free 

! mmap, unmap  

! Serializaion, Deserializaiton 

! Incompatibility between multiple things put together that look similar but in fact 
not totally 

! New system and legacy system put together 

! New API and legacy API put together

Traditional 
Phone Call

VoIP 
 Phone Call

Phone App



INTRODUCTION

! Currently, mainly supports Session Initiation Protocol - SIP(RFC3261) 
related protocols

Registra
r

SIP Trapezoid

SDP Signaling negotiation

RTP Media Session

SIP Connection Establishment

2. Android VoIP



SIP MESSAGES (SIGNALING)

! Message Type 
! REGISTER 
! INVITE 
! ACK 
! CANCEL 
! BYE

SIP INVITE Message

SDP message

SIR URI

Media type：audio、RTP stream

Media properties



RTP MESSAGES (MEDIA)

! RTP Header 
! V (Version) 
! P (Padding) 
! X (Extension) 
! CC (CSRC Counter) 
! M (Marker) 
! PT (Payload Type) 

! Codecs in cellular network 
! ITU-T G.711 U law(PCMU) & A law(PACMA) 
! AMR (Adaptive multi-Rate compression) 
! GSM-EFR (GSM Enhanced Full Rate) 
! ITU-T G.729

RTP U law Codec Audio

RTP Header



ANDROID VOIP IMPLEMENTATION

! SIP：nist-sip(Java) 

! RTP：librtp_jni(c++) 

! Codec: Supports libgsm、
libstagefright_amrnbdec、
libstagefright_amrnbenc，only PCMA、
PCMU、AMR、GSM-EFR 

! User Agent: Integrated in Telephony 
! Number Display：Integrated in Dialer

Android VoIP implementation



ANDROID SIP API



ANDROID VOIP CLIENT

! We can use SIP API provide by the Framework to implement a VoIP client 
! Or just use phone app provided by Android, Phone App->Settings->Calls-

>Calling accounts->SIP accounts



ANDROID VOIP (IN)SECURITY

! Protocol Security 
! No support to Confidentiality, Integrity and Authenticity 

! VoIP Server Security 
! Proxy、Registrar Security is not involved 

! VoIP Client Implementation Security 
! Denial of Service 

! Privilege Escalation 

! Information Disclosure 

! Buffer Overflow 

! Call Spoof

3. Insecurity with case studies



RESEARCH METHODOLOGY

!Looking for all the potential attack 
surfaces 

!Audit code where inconsistency may 
occur and where modules interacts 

!Dumb fuzzing against SIP/SDP/RTP 
protocol



SUMMARY OF FINDINGS 

local Remote

DoS

Information Disclosure

Privilege Escalation

Arbitrary Code Execution

Call Spoof

* CVE-2016-6763

* CVE-2017-0394

* CVE-2018-9475

* A-31823540

* A-32623587 

* CVE-2018-XXXX

* CVE-2017-11042(Qualcomm Service)
* H1 #386144 (VK App)

* A-31823540

more than 10,000$  bounty 



CVE-2016-6763: PATH TRAVERSAL

! Leads to sensitive information disclosure and local permanent 
DoS, Affecting Android 7.0  

! A SipProfile will be serialized and deserialized every time user 
adds and uses the SIP account. 

! The serialized file “.pobj” is stored in a directory named as 
“<sip_user>@<server_ip>”



CVE-2016-6763: PATH TRAVERSAL

deleteProfile(new File(mProfileDirectory + p. getProfileName())

File f = new File(mProfileDirectory + p. getProfileName()) 
f.mkdirs();

File f = new File(new File(root, name), “.pob”); 
If (f.exists())  
 SipProfile p = desrialize(p);

Vulnerable code

What if profileName includes ‘/..’ ? 

SIP URI could be inconsistent with URI based 
file name



SENSITIVE INFORMATION DISCLOSURE

! Save the SipProfile outside will 
lead to SIP password disclosure

The mProfileDirectory is 

/data/data/com.android.phone/files/alice/
@CompromisedSite/../../../../../../sdcard/ 



PERMANENT DOS

! A user could brick the phone easily if he adds  a  
malformed sip account in 
com.android.providers.telephony via path traversal

The mProfileDirectory is 

/data/data/com.android.phone/files/alice/
@somesite/../../../../../../data/data/
com.android.providers.telephony/sdcard/ 



PERMANENT DENIAL OF SERVICE

! To modify the SIP Account  into  
alice/@somesite/../../../../../../data/data/
com.android.providers.telephony/databases/
mmssms.db 
and save will 

! First delete  the old account’s SipProfile directory 
and all of its files 

! Then construct the new one 
! Due to this fake mmssms.db, the real one is 

unable created thus disable any SMS 
function. 

! Need a factory reset to recover. 



PRIVILEGE ESCALSTION IN VK APP
! H1 Report#386144 ：A malicious App could bypass user interaction to 

make a call to another VK user, found in VK Android App Version 5.13 
recently. 

! Root cause: the LinkRedirActivity could be launched with a fake content 
provider to make a VoIP Call to arbitrary VK user

Attack App

Binder IPC (local)

 Zero Permwith RECORD_AUDIO 
and can make a VoIP Call

 Intents with vk.voip 
mimetype data and 
content:// scheme

VoIP Call to 
Another VK User



PRIVILEGE ESCALATION IN QUALCOMM 
QTI-IMS BINDER

! CVE-2017-11042：A malicious App could set call forward  provided by 
QtiIMS system service without declaring permissions 

! Affecting Google Pixel device(sailfish:7.1.2)

Attack App

Binder IPC (local)

 Zero Perm

 Binder Call

sendCallDeflectRequest 
sendCallTransferRequest 
setCallForwardUncondTimer

System_server　
IQtiImsExt

A typical VoIP Call 
feature in IP 
Multimedia 
Subsystem(IMS) 

With CALL_PRIVILEGES Permission



MORE INTERESTING BUGS

! Found by Dumb Fuzzing

SIP Proxy:  OpenSIPS Server

Callee: Android Caller or Attacker: mjUA SIP UA 

Client Fuzz: 
• SIP Fuzz 
• SDP Fuzz 
• RTP FuzzMITM Fuzz



MORE ABOUT MJUA

! A command-line base SIP UA implementation with flexible 
options 

$ ./uac.sh -h 
-f  <file>:  specifies a configuration file, fuzzing for sdp 
-c <call_to>: config the victim’s SIP URI 
-y <secs>: could be  used as fuzz interval time 

--display-name <str>: display name, fuzzing for sip 

--user <user> : user name, fuzzing for sip 

--send-file <file> audio is played from the specified file, fuzzing for rtp 
…



MJUA CONFIGURATION FILE

!  Notice these Media description that could manipulate SDP



MORE INTERESTING FINDINGS

! Spam: A-31823540 
! Spoof: A-32623587 (Credited by Google VRP) 
   Both affect Dialer App in Android 7.1.1 
! Remote DoS: CVE-2017-0394, affecting Android 

7.1.1



SPAM VIA A SUPER LARGE SIP NAME

POC: 

./uac.sh –user 
<super_large_name>  
<victim’s sip account>



SPOOF OF INCALLUI

POC: ./uac.sh –user “<number_to_display>&”
In a PSTN call, the caller’s number and the forwarding number is splat by “&” 

In a VoIP call, the number string including “&” is totally part of caller’s URI
Inconsistency!



SPOOF OF INCALLUI

! Which one is real?

Via SIP name: “13550232572&” 
And 13550232572 is victim’s 
contact with the name Baby

Via SIP name: “911&” Via SIP name: 
“+16502530000&”

Google’s telephone number with its place



DEMO VIDEO – SPOOF OF SIP NAME



ANOTHER SPOOF OF INCALLUI

! “phone-context“ parameter specified in  RFC3966 
tel:650253000;phone-context=+1  
tel:+16502530000  are the same 

! “phone-context” also can be part of Caller’s SIP URI 

Another inconsistency 



WHEN COMBINED WITH CALLERID

! CallerID 
! A security mechanism, which allows user 

correlate the well-known number to its name 
or mark spam number 

! By default it’s on in Android 

POC: ./uac.sh –user 
6502530000;phone-context=+1

Chinese name of 
Google

Information about 
Google



REMOTE DOS IN TELEPHONY

! CVE-2017-0394, found by SDP fuzz 
! POC: ./uac.sh –f malformed.cfg 

! No suitable codecs: add “media_spec=audio 102 G726-24 8000 60” in 
malformed.cfg 

! Invalid SDP : add “media=AAAA 4000” In malformed.cfg



REMOTE DOS IN TELEPHONY

! Both unhandled exceptions in SipAudioCall of 
Phone App 

! Crash Phone App on the moment of accepting 
the SIP Call 

! Google combined the two unhandled 
exceptions into one CVE



RTP FUZZ – CODEC FUZZ

! Generate PCMU/PCMA/AMR/GSM-EFR codec corpus 
! Then ./uac.sh –send-file <courpus> one by one 
! The victim phone installs AutoAnswer App, making fuzzing automatically



RTP FUZZ

! Mutate RTP headers in MITM via Ettercap filters 

! Or customize mjUA, Mutate the RTP headers and send RTP 
! Modify RtpStreamerSender.java



TELEPHONY AND BLUETOOTH

! Bluetooth HFP (Hands-Free Profile)  
! Defines a set of functions such that a Mobile Phone can be used in 

conjunction with a Hands-Free device

Public 
Wireless  
Network

Simple Handset

Hands-Free Unit 
installed in the car

Bluetooth Connection

Cellular Connection

IP Connection

Inconsistency

AG – Audio Gateway

HF – Hands Free devices



WHAT HAPPENS WHEN THEY MEET
! Two interesting vulnerabilities due to complex module 

interactions and inconsistency 
! CVE-2018-9475, Remote Stack Buffer Overflow when Receiving CLCC 

Response , Critical, affecting Android 9.0 until Sept.,2018 

! CVE-2018-XXXX, Remote DoS  due to Integer Underflow when Phone 
State Change, Moderate 

! Both are in btif_hf.cc of libbluetooth-jni.so

B
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VoIP Call
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Remote 
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CVE-2018-9475
! Remote Stack Buffer Overflow in btif_hf.cc when Receiving CLCC 

Response and a VoIP phone call with super large name, affecting Android 
9.0 until Sept. 2018

dialnum is a fixed sized local array!

Stack buffer Overflow by super large 
VoIP Phone Number !



POC OF CVE-2018-9475

Limitation: only dial characters are allowed due to check of utl_isdialchar

POC: ./uac.sh --user $(python -c 'print "8"*1055')
AT+CLCC



DEMO VIDEO OF CVE-2018-9475



CONCLUSION

! Many Attack Surfaces 
! Android VoIP exposes Interesting local and remote attacking surfaces, including 

local binder based IPC, remote SIP/SDP/RTP protocols and interactions with 
Bluetooth  

! Inconsistency 
! The VoIP Call and Traditional Call are not compatible completely 

! The all-in-one implementation of VoIP call and traditional call in Phone leads to 
inconsistencies 

! Inconsistency is the mother of vulnerability 

! VoIP phone call is so different 
! Programmers should always be careful when processing a phone call 
! Keep in mind that it could be a VoIP call, whose phone number could 

contain non-digital characters and could be super large

4. Thought



FUTURE WORK

! More android VoIP third-library, will also be the attack 
surface of our research. 

! We should take more concern when transmit data cross 
layer/border. 

! The development of feedback-based Fuzz will greatly 
improve our vulnerability hunting efficiency.



FEEDBACK-BASED FUZZ LIBRARY
! Feedback-based fuzz saves  test cases that generate new coverage paths. 
! Combined with various Sanitizers (such as ASAN, UBSAN, MSAN, TSAN, etc.).



EXPLORE PROTOCOL FUZZ

! Explore RTP issues 

! Overloaded or modify Socket  
!    socket，accept，accept4，bind，listen，connect etc. 
!    Patch some branches 

! Find the appropriate way to pass data 
!    Custom códec 

!    Tracecmp then analysis conditions 
!    Generate new test cases based on code coverage feedback and discard useless use cases

Android VoIP implementation



EXPLORE PROTOCOL FUZZ

! In the past, we also use Libfuzzer to fuzz Protocol function implementation 
! Deep into Protocol Fuzz

Start two threads

Socketpair()

Return front 
Socket

Back Socket  
Write stdout

Stdin write 
Back socket
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