
Hacking Android VoIP
For Fun and Profit

heeeeen & quhe
POC2018, Seoul, Korea

ABOUT US

! En He (a.k.a: heeeeen)
! Mainly research on Android App and Framework Security
! Frequently thanked in Android Security Bulletin and H1 during 2017-2018

! Research published in http://www.ms509.com
! Email: heeeeen@gmail.com, HackerOne: heeeeen

! Jiashui Wang (a.k.a: quhe)
! Senior expert and Team leader at Ant-financial Light-Year Security Lab
! Focus on mobile security and vulnerability hunt
! Received acknowledgement from Google,Samsung,Twitter,360 and more.
! Did research sharing at conferences like Blackhat USA, Blackhat Asia,

CanSecWest, HITCON, ZeroNights.

http://www.ms509.com/

AGENDA

1. Why VoIP
2. Android VoIP
3. Insecurity with Case Studies
4. Thought

WHAT IS VOIP
! Voice over IP - Using the IP network to route voice data
! Networking and telecoms company supports VoIP in their

communication products

! Many IMs have VoIP client features

! Android supports VoIP inherently in Telephony

1. Why VoIP

PROTOCOLS INVOLVED

WHY VOIP

! Popularity
! Compatibility
! Openness

WHY VOIP IN ANDROID

! Previous research mainly focuses on VoIP server or
VoIP Protocol security
! Encryption

! Authentication

! Authorization

! VoIP implementation in Android is seldom audited
! VoIP embeds in Android Telephony, which is a

privileged process (uid=1001)

FROM A HACKER’S VIEW

! Many Attack Surfaces

Exported
component

Privileged Phone App Attack App

private db permissions

Attack
Component

Binder IPC (local)Network Communication
(remote)

Internet Circuit Switched
Communication

Packet Switched
Communication

Telephone Manager

RIL

Bluetooth

Bluetooth
communication

Bluetooth Headset
Or
Carkit

FROM A HACKER’S VIEW
! Inconsistency leads to vulnerabilities, two types of inconsistencies

! Asymmetry in two operations that should have been symmetrical , such as
! Malloc, free

! mmap, unmap

! Serializaion, Deserializaiton

! Incompatibility between multiple things put together that look similar but in fact
not totally

! New system and legacy system put together

! New API and legacy API put together

Traditional
Phone Call

VoIP
 Phone Call

Phone App

INTRODUCTION

! Currently, mainly supports Session Initiation Protocol - SIP(RFC3261)
related protocols

Registra
r

SIP Trapezoid

SDP Signaling negotiation

RTP Media Session

SIP Connection Establishment

2. Android VoIP

SIP MESSAGES (SIGNALING)

! Message Type
! REGISTER
! INVITE
! ACK
! CANCEL
! BYE

SIP INVITE Message

SDP message

SIR URI

Media type：audio、RTP stream

Media properties

RTP MESSAGES (MEDIA)

! RTP Header
! V (Version)
! P (Padding)
! X (Extension)
! CC (CSRC Counter)
! M (Marker)
! PT (Payload Type)

! Codecs in cellular network
! ITU-T G.711 U law(PCMU) & A law(PACMA)
! AMR (Adaptive multi-Rate compression)
! GSM-EFR (GSM Enhanced Full Rate)
! ITU-T G.729

RTP U law Codec Audio

RTP Header

ANDROID VOIP IMPLEMENTATION

! SIP：nist-sip(Java)

! RTP：librtp_jni(c++)

! Codec: Supports libgsm、
libstagefright_amrnbdec、
libstagefright_amrnbenc，only PCMA、
PCMU、AMR、GSM-EFR

! User Agent: Integrated in Telephony
! Number Display：Integrated in Dialer

Android VoIP implementation

ANDROID SIP API

ANDROID VOIP CLIENT

! We can use SIP API provide by the Framework to implement a VoIP client
! Or just use phone app provided by Android, Phone App->Settings->Calls-

>Calling accounts->SIP accounts

ANDROID VOIP (IN)SECURITY

! Protocol Security
! No support to Confidentiality, Integrity and Authenticity

! VoIP Server Security
! Proxy、Registrar Security is not involved

! VoIP Client Implementation Security
! Denial of Service

! Privilege Escalation

! Information Disclosure

! Buffer Overflow

! Call Spoof

3. Insecurity with case studies

RESEARCH METHODOLOGY

!Looking for all the potential attack
surfaces

!Audit code where inconsistency may
occur and where modules interacts

!Dumb fuzzing against SIP/SDP/RTP
protocol

SUMMARY OF FINDINGS

local Remote

DoS

Information Disclosure

Privilege Escalation

Arbitrary Code Execution

Call Spoof

* CVE-2016-6763

* CVE-2017-0394

* CVE-2018-9475

* A-31823540

* A-32623587

* CVE-2018-XXXX

* CVE-2017-11042(Qualcomm Service)
* H1 #386144 (VK App)

* A-31823540

more than 10,000$ bounty

CVE-2016-6763: PATH TRAVERSAL

! Leads to sensitive information disclosure and local permanent
DoS, Affecting Android 7.0

! A SipProfile will be serialized and deserialized every time user
adds and uses the SIP account.

! The serialized file “.pobj” is stored in a directory named as
“<sip_user>@<server_ip>”

CVE-2016-6763: PATH TRAVERSAL

deleteProfile(new File(mProfileDirectory + p. getProfileName())

File f = new File(mProfileDirectory + p. getProfileName())
f.mkdirs();

File f = new File(new File(root, name), “.pob”);
If (f.exists())
 SipProfile p = desrialize(p);

Vulnerable code

What if profileName includes ‘/..’ ?

SIP URI could be inconsistent with URI based
file name

SENSITIVE INFORMATION DISCLOSURE

! Save the SipProfile outside will
lead to SIP password disclosure

The mProfileDirectory is

/data/data/com.android.phone/files/alice/
@CompromisedSite/../../../../../../sdcard/

PERMANENT DOS

! A user could brick the phone easily if he adds a
malformed sip account in
com.android.providers.telephony via path traversal

The mProfileDirectory is

/data/data/com.android.phone/files/alice/
@somesite/../../../../../../data/data/
com.android.providers.telephony/sdcard/

PERMANENT DENIAL OF SERVICE

! To modify the SIP Account into
alice/@somesite/../../../../../../data/data/
com.android.providers.telephony/databases/
mmssms.db
and save will

! First delete the old account’s SipProfile directory
and all of its files

! Then construct the new one
! Due to this fake mmssms.db, the real one is

unable created thus disable any SMS
function.

! Need a factory reset to recover.

PRIVILEGE ESCALSTION IN VK APP
! H1 Report#386144 ：A malicious App could bypass user interaction to

make a call to another VK user, found in VK Android App Version 5.13
recently.

! Root cause: the LinkRedirActivity could be launched with a fake content
provider to make a VoIP Call to arbitrary VK user

Attack App

Binder IPC (local)

 Zero Permwith RECORD_AUDIO
and can make a VoIP Call

 Intents with vk.voip
mimetype data and
content:// scheme

VoIP Call to
Another VK User

PRIVILEGE ESCALATION IN QUALCOMM
QTI-IMS BINDER

! CVE-2017-11042：A malicious App could set call forward provided by
QtiIMS system service without declaring permissions

! Affecting Google Pixel device(sailfish:7.1.2)

Attack App

Binder IPC (local)

 Zero Perm

 Binder Call

sendCallDeflectRequest
sendCallTransferRequest
setCallForwardUncondTimer

System_server　
IQtiImsExt

A typical VoIP Call
feature in IP
Multimedia
Subsystem(IMS)

With CALL_PRIVILEGES Permission

MORE INTERESTING BUGS

! Found by Dumb Fuzzing

SIP Proxy: OpenSIPS Server

Callee: Android Caller or Attacker: mjUA SIP UA

Client Fuzz:
• SIP Fuzz
• SDP Fuzz
• RTP FuzzMITM Fuzz

MORE ABOUT MJUA

! A command-line base SIP UA implementation with flexible
options

$./uac.sh -h
-f <file>: specifies a configuration file, fuzzing for sdp
-c <call_to>: config the victim’s SIP URI
-y <secs>: could be used as fuzz interval time

--display-name <str>: display name, fuzzing for sip

--user <user> : user name, fuzzing for sip

--send-file <file> audio is played from the specified file, fuzzing for rtp
…

MJUA CONFIGURATION FILE

! Notice these Media description that could manipulate SDP

MORE INTERESTING FINDINGS

! Spam: A-31823540
! Spoof: A-32623587 (Credited by Google VRP)
 Both affect Dialer App in Android 7.1.1
! Remote DoS: CVE-2017-0394, affecting Android

7.1.1

SPAM VIA A SUPER LARGE SIP NAME

POC:

./uac.sh –user
<super_large_name>
<victim’s sip account>

SPOOF OF INCALLUI

POC: ./uac.sh –user “<number_to_display>&”
In a PSTN call, the caller’s number and the forwarding number is splat by “&”

In a VoIP call, the number string including “&” is totally part of caller’s URI
Inconsistency!

SPOOF OF INCALLUI

! Which one is real?

Via SIP name: “13550232572&”
And 13550232572 is victim’s
contact with the name Baby

Via SIP name: “911&” Via SIP name:
“+16502530000&”

Google’s telephone number with its place

DEMO VIDEO – SPOOF OF SIP NAME

ANOTHER SPOOF OF INCALLUI

! “phone-context“ parameter specified in RFC3966
tel:650253000;phone-context=+1
tel:+16502530000 are the same

! “phone-context” also can be part of Caller’s SIP URI

Another inconsistency

WHEN COMBINED WITH CALLERID

! CallerID
! A security mechanism, which allows user

correlate the well-known number to its name
or mark spam number

! By default it’s on in Android

POC: ./uac.sh –user
6502530000;phone-context=+1

Chinese name of
Google

Information about
Google

REMOTE DOS IN TELEPHONY

! CVE-2017-0394, found by SDP fuzz
! POC: ./uac.sh –f malformed.cfg

! No suitable codecs: add “media_spec=audio 102 G726-24 8000 60” in
malformed.cfg

! Invalid SDP : add “media=AAAA 4000” In malformed.cfg

REMOTE DOS IN TELEPHONY

! Both unhandled exceptions in SipAudioCall of
Phone App

! Crash Phone App on the moment of accepting
the SIP Call

! Google combined the two unhandled
exceptions into one CVE

RTP FUZZ – CODEC FUZZ

! Generate PCMU/PCMA/AMR/GSM-EFR codec corpus
! Then ./uac.sh –send-file <courpus> one by one
! The victim phone installs AutoAnswer App, making fuzzing automatically

RTP FUZZ

! Mutate RTP headers in MITM via Ettercap filters

! Or customize mjUA, Mutate the RTP headers and send RTP
! Modify RtpStreamerSender.java

TELEPHONY AND BLUETOOTH

! Bluetooth HFP (Hands-Free Profile)
! Defines a set of functions such that a Mobile Phone can be used in

conjunction with a Hands-Free device

Public
Wireless
Network

Simple Handset

Hands-Free Unit
installed in the car

Bluetooth Connection

Cellular Connection

IP Connection

Inconsistency

AG – Audio Gateway

HF – Hands Free devices

WHAT HAPPENS WHEN THEY MEET
! Two interesting vulnerabilities due to complex module

interactions and inconsistency
! CVE-2018-9475, Remote Stack Buffer Overflow when Receiving CLCC

Response , Critical, affecting Android 9.0 until Sept.,2018

! CVE-2018-XXXX, Remote DoS due to Integer Underflow when Phone
State Change, Moderate

! Both are in btif_hf.cc of libbluetooth-jni.so

B
luetooth S

tack w
ith

H
FP

Bluetooth Headset
State machineAT+CLCC

HF
P

hone M
anager

S
ervice

libbluetooth-jni

VoIP Call

AG

+CLCC：
<index>…<number>

Remote
Attacker

CVE-2018-9475
! Remote Stack Buffer Overflow in btif_hf.cc when Receiving CLCC

Response and a VoIP phone call with super large name, affecting Android
9.0 until Sept. 2018

dialnum is a fixed sized local array!

Stack buffer Overflow by super large
VoIP Phone Number !

POC OF CVE-2018-9475

Limitation: only dial characters are allowed due to check of utl_isdialchar

POC: ./uac.sh --user $(python -c 'print "8"*1055')
AT+CLCC

DEMO VIDEO OF CVE-2018-9475

CONCLUSION

! Many Attack Surfaces
! Android VoIP exposes Interesting local and remote attacking surfaces, including

local binder based IPC, remote SIP/SDP/RTP protocols and interactions with
Bluetooth

! Inconsistency
! The VoIP Call and Traditional Call are not compatible completely

! The all-in-one implementation of VoIP call and traditional call in Phone leads to
inconsistencies

! Inconsistency is the mother of vulnerability

! VoIP phone call is so different
! Programmers should always be careful when processing a phone call
! Keep in mind that it could be a VoIP call, whose phone number could

contain non-digital characters and could be super large

4. Thought

FUTURE WORK

! More android VoIP third-library, will also be the attack
surface of our research.

! We should take more concern when transmit data cross
layer/border.

! The development of feedback-based Fuzz will greatly
improve our vulnerability hunting efficiency.

FEEDBACK-BASED FUZZ LIBRARY
! Feedback-based fuzz saves test cases that generate new coverage paths.
! Combined with various Sanitizers (such as ASAN, UBSAN, MSAN, TSAN, etc.).

EXPLORE PROTOCOL FUZZ

! Explore RTP issues

! Overloaded or modify Socket
! socket，accept，accept4，bind，listen，connect etc.
! Patch some branches

! Find the appropriate way to pass data
! Custom códec

! Tracecmp then analysis conditions
! Generate new test cases based on code coverage feedback and discard useless use cases

Android VoIP implementation

EXPLORE PROTOCOL FUZZ

! In the past, we also use Libfuzzer to fuzz Protocol function implementation
! Deep into Protocol Fuzz

Start two threads

Socketpair()

Return front
Socket

Back Socket
Write stdout

Stdin write
Back socket

Thanks!
heeeeen@gmail.com, xiaojs1989@gmail.com

mailto:heeeeen@gmail.com

