Tampering with
Encrypted Memory Blocks of
the Trusted Execution Environment

Yeongjin Jang

=
Oregon State
) University

Outline

* Intro to the Trusted Execution Environment

 The SGX-Bomb Attack
 The Rowhammer attack

* Discussions
e Conclusion

Traditional Computer Systems

Process 1 Process 2 Process 3
UID 100 UID 100 UID 200

Operating System

(

Process boundary cannot protect the execution environment from
attacks

\

Sandbox

. Project Zero
 Application Sandbox

* i0S / Android

News and updates from the Project Zero team at Google

» Javascript Sandbox
 Chrome, Safari, Edge, etc.

Mac OS X and iPhone sandbox escapes

Posted by Chris Evans, Finder of None Of These

Sandbox can isolate execution environment,
but sandbox itself could have vulnerabilities

Sandbox

 Application Sandbox

« i0OS / Android Process 1 Process 2 Process 3
UID 100 UID 100 UID 200

 Javascript Sandbox
 Chrome, Safari, Edge, etc.

Operating System

A kernel exploit could break the entire protections

VMWare, Lokihardt

VI rtu a‘ I\/l aC h I n e VNQFEST " | | | PWN@FI

VN@FEST

Process 1
UID 100

0

VN@FEST

)

Operating Systerr

Lokihardt! One more one shot one kill in exp
loiting VMWare. Escaping guest to host! He w
ill get $150,000.

Adding more privileged layer does not solve the problem...

Hardware Trusted Execution Environment

Process 1 Process 2

UID 100 UID 100

Operating System

4)
Provide a hardware support to protect execution environment from
software attacks

Intel SGX

* Practical implementation of TEE by Intel Process 1
« An extension to x86 UD 100 TEE

« Untrusting OS and other privileged software

Operating System

* Runs at Ring-3 (userlevel) Hypervisor

Hardware-based Encryption & Isolation

Physical Address
Memory SPace Access from
OS/VMM

CPU Package

Processor Key EPC

Encrypted --.___
j ESnOOng code/data
Memory Encryption)
Engine (MEE)

Access b/w
enclaves

10

SGX's Threat Model is Very Strong!

- All except the core package can be malicious
- Device, firmware, ...
- Operating systems, hypervisor ...

Potential Use-case of Intel SGX

» Secure data processing in Cloud

Process 1 am azon
e web services™

HEl Microsoft
Bl Azure

SGX's Threat Model is Very Strong!

- All except the core package can be malicious
- Device, firmware, ...
- Operating systems, hypervisor ...

- Intel excludes side-channel from SGX’s threat model

Attacks to Intel SGX

 Controlled Channel Attack [Oakland ‘15]
* Finer-grained Controlled Channel Attack [USENIX Security ’17]
* Branch-predictor Attack [USENIX Security ‘[...

» Dark-ROP [USENIX Security “17] (My work!! S5
» CacheZoom [arXiv] o

All attacks are side-channel attacks

14

Summarizing TEE

- Hardware-based TEE and Intel SGX is very promising technology

- A different threat model for a new security protection
« ARM TrustZone
- AMD SME/SEV
- Intel SGX

- A great security mechanisms, but could also be a new attack
vector

SGX-BOMB:
_ocking Down the Processor
via the Rowhammer Attack

Yeongjin Jang*, Jaehyuk Leet, Sangho Leegg, and Taesoo Kimgy

Oregon State University*
KAIST

Georgia Institute of Technologygs

0 Stat Georgia
Gy~ KAIST 9520

éa

SGX Encrypts an Enclave’s Memory

DRAM
* Memory Encryption Engine (MEE) handles the encryption
* Encrypts enclave’s data with processor’s key
» Attackers on the DRAM cannot see plaintext ([) EPC
» Confidentiality > 777

« Attackers could tamper ciphertext but... MEE

. : 1 k
* Processor will authenticate data (Integrity)

* Protect an enclave from hardware attackers

17

Integrity Tree Protects the Integrity of EPC

DRAM
* Integrity Tree f $ A
* A version tree that stores hash of data ore
EPC | Int Tree
MEE || Root | [7]
* Rooted at on-die SRAM \S = ﬁ :
* Parent node contains the hash of its children nodes EPC - Enclaves

« Updated on each write and checked on each read

« Any integrity violation can be detected on read
access

18

Inte
Car

Assumes Only Hardware Attackers

Launch Attacks on

-PC

* Processor isolates EPC from non-enclave accesses

 Redirect all access to EPC to an abort page (if the origin is not a right
enclave)

« Return Oxffffffffffffffff for all memory read and ignore write
* Rely on an extension to page table handler

* Threat model
* Software attacker cannot access (read/write) to the EPC region
* Only hardware attacker can tamper the integrity of ciphertext

On Integrity Violation

* Integrity violation infers an existence of a hardware attacker

* Intel took the drop-and-lock policy

 Processor locks up the memory controller to stop running, to block any
further damage on enclaves by the hardware attackers

* The processor must be rebooted

On Integrity Violation

* Integrity violation infers an existence of a hardware attacker

No, that’s not true. Attackers can induce bit-flips in DRAM without
directly accessing them by launching the Rowhammer attack in
software

_
* Intel took the drop-and-lock policy

 Processor locks up the memory controller to stop running, to block any
further damage on enclaves by the hardware attackers

* The processor must be rebooted

21

SGX-BOMB

A processor Denial-of-Service attack by exploiting Intel SGX

* Intentionally trigger drop-and-lock policy by inducing integrity
violation using the Rowhammer attack

« Fast, hideous, and could lockdown the entire server in the
cloud

* Hard to detect; software fix is hard

The Rowhammer Attack [ISCA 2014]

Columns

» A disturbance attack on the DRAM /~ ADRAM BANK

« A hardware vulnerability Rows
« Accessing different rows in a bank

could induce disturbance in adjacent

row

« Triggered by purely in software

[® ©6 0 O]RowBuffer

23

The Rowhammer Attack [ISCA 2014]

» Access Row i-1 and i+1 for multiple times /~ ADRaM BANK

(i-1)th row
 This will induce disturbance in ith row (i) throw
(i+1)th row

[® 6 0 o]RowBuffer

24

The Rowhammer Attack [ISCA 2014]

» Access Row i-1 and i+1 for multiple times /~ ADRaM BANK

: : : : (i-1)th row
 This will induce disturbance in ith row (i) throw

(i+1)th row
EESSS

[] Row Buffer

25

The Rowhammer Attack [ISCA 2014]

* The attack can filp multiple bits in a block” ADRAM BANK

\
« DRAM with ECC could not completely block th (i-1)th row
(i) throw
* The attack is triggered by software (i+1)th row
» Breaks Intel’s threat assumption
\- _/

* No memory access is required
» The data will be mismatched with Integrity Tr[® & 0 ¢]ROW Buffer

26

aunching Rowhammer in SGX

 Should know virtual addresses that map to interleaved rows

* Enclave does not know the physical address (Ring 3)
« Can be resolved with a timing side-channel (DRAMA [SEC 2016])

» Accessing to a different row in the same bank will take more time

« E.g., 500 cycles for buffered read, 550 cycles for read from a different bank,
and 650 cycles for reading conflicting rows

* SGX does not have a timer (rdtsc is prohibited)
* Get helped by ocall to call rdtsc after 1,000 times of access

* Or, we can spawn a thread to count integers (to get # of cycles
elapsed)

Step 1: Finding Rows in the Same Bank

* Fix an address (p1) » Access time > THRESHOLD will

« For the addresses in enclave be rows in.the same I.aan.k
(p2), * 600,000 in our test with i7-6700K

. Place a timer For 1,000 times of row access

» Access p1 and p2 multiple times
* Get the timer value and check

#define N_THRESHOLD (600000)

#define N_TIMES (1000)

// Runs outside of an enclave

bool check_addr_in_the_same_bank(uint64_t *pl, uint64_t *p2) {
// returns ~500000 if pl and p2 are in the same row

// measure the timing of accessing two addresses pl and p2
void enclave_access_row(uint64_t *pl, uint64_t *p2, uint64_t n_trial) {
// run for n_trial times (to amplify the delay)
while (n_trial-- > 0) {
// flush two addresses from the cache

// returns ~550000 if’pl and p2 are iq différent banks asm volatile("clflushopt (%¥0)" :: "r"(pl) : "memory");
// {eturns > 600000 if pl and p2 are in different rows asm volatile("clflushopt (¥8)" :: "r"(p2) : "memory");
/(in the same bank asm volatile("mfence:"):
size_t start_time = rdtscp(); // access two addresses
epclave_acce§s_row(p1, p2, N_TIMES); asm volatile("mov (%0), *¥¥%r1®;" :: "r"(pl) : "memory");
size_t end_time = rdtscp(); asm volatile("mov (%0), ¥¥r1l;" :: "r"(p2) : "memory");

return((end_time - start_time) > N_THRESHOLD); asm volatile("lfence:"):

28

Step 2: Finding 1-interleaved Rows (i-1, |,
+1)

e Current SGX driver for Linux uses a naive scheduler for
allocating memory in EPC

* Virtually adjacent rows are highly likely to be adjacent in the
physical space, too

* Just picking two virtually adjacent rows in the middle (over
32MB space) would be sufficient for the attack

Step 3: Hammering Rows

void dbl_sided_rowhammer(uint64_t *pl, uint64_t *p2, uint64_t n_reads) {

while(n_reads-- > 0) {
// read memory pl and p2

asm volatile("mov (%0), %¥¥rl10;" :: "r"(pl)
asm volatile("mov (%0), %¥rll;" :: "r"(p2)
// flush pl and p2 from the cache
asm volatile(“"clflushopt (%0);" :: "r"(pl)
asm volatile(“"clflushopt (%0);" :: "r"(p2)
}
chk_£f1lip(Q);

}

: "memory");
: "memory");

: "memory");
: "memory");

/~ ADRAM BANK

~

] Row Buffer

30

DEMO

 https://www.youtube.com/watch?v=X3Répqilgyo

31

https://www.youtube.com/watch?v=X3R6pqi1gyo

Result

* We observed that SGX-BOMB can happen in normal settings
- Core i7-6700K (Skylake), 8GB DDR4-2133Mhz DRAM
 Took 283 seconds

* Much faster attack time in higher refresh time

Refresh time 64 (default)
(ms)

Attack time

32

Implications of the SGX-BOMB attack

« SGX-BOMB on a cloud provider (e.g., EC2/Azure) could lock a
processor in the could server

* This will lock the entire server instance because QPIls and
NUMA would fail

 All tenants suffer reboot

Implications of the SGX-BOMB attack

* Rebooting the cloud machine would affect on the SLA a lot
« Amazon guarantees 99.95% SLA

 Reloading working memory set in redis and memcached requires long
time...

 The attack can also lock an end-user’s machine

The Rowhammer Attack in Enclaves

 SGX-BOMB attack is easier to launch than other attacks

* Only require one flip in any block in the EPC region (~128MB)

* Do not require a specific bit to flip; unlike flipping bits in private key
(FFS), etc.

* Detection of SGX-BOMB is harder

« Cannot inspect application; an enclave can load executables
dynamically

« Cannot use PMU to monitor in-enclave operations (ANVIL & Linux)
 Anti side-channel inference (ASCI) in effect

Root-cause 1s In DRAM

* Not a design flaw of SGX

» Target Row Refresh (TRR)
* Standardized in LPDDR3, but not in both DDR3 and DDR4

* Intel’s Pseudo-TRR (pTRR) is in the processor, but still non-
compliant vulnerable DRAMs are in the market

* ECC could mitigate SGX-BOMB, but cannot completely block it
* Multiple bit flips (2 or more) in one block are possible

Potential Software Mitigations®?

« CATT/GATT [SEC 2017] could be a solution

 Block any access to the adjacent rows of the rows of the EPC region

« Changing memory allocation scheduling also helps
* Make finding adjacent row harder

* Use Uncore PMU for detection
* ASCI does not hide information for Uncore PMU

« e.g., [L3 miss from Uncore PMU] - aggregated([L3 access from core
PMU])
= [L3 access from enclaves]

Better Defense than Drop-and-Lock?

* |t is the sole problem of a malicious enclave, but drop-and-lock
stops all executions of a processor

* Better options?
 Let regular operations go on while disabling further SGX execution

 Just Kill the target enclave that owns the violated block in EPC
* EPCM contains the information

* Both approaches require hardware modification

Conclusion

* Intel SGX locks the processor if any of integrity violation detected on
accessing EPC memory

* |t assumes the violation can only happen if there is a hardware attack

« SGX-BOMB can tamper the data in EPC memory via the Rowhammer
attack, which is in software manner, to trigger processor lock

* SGX-BOMB can lockdown cloud servers equipped with SGX and is hard
to be detected by existing Rowhammer defenses

