
Fuzzing
Javascript Engines

Yejoon’s Papa

a.k.a singi

@sjh21a

Fuzzing Javascript Engines English Description.

** Note : This is not translate all korean talk.

	 	 : Just get to important keyword in each pages.

Hello Native!?

• I’m Native Korean!

• English explanations are included in this file

• http://singi.kr/poc2017-singi.pdf

• if you get bored during this session, try to access
http://singi.kr/safari.html

• Enjoy :D

http://singi.kr/poc2017-singi.pdf
http://singi.kr/safari.html

$ more ‘singi’
• JeongHoon Shin

• Software Bug Researcher

• mainly in browsers

• Theori@KR, Mentor of B.o.B

• Being papa

• parenting 24/5

Introduce myself

Today, Point!

• Why target browsers?

• How to approach zero-days?

• How to make random syntax more smartly?

• Introduce to Javascript Fuzzing Factory

Why target browsers?
• Most people use browsers

• is there anyone not using browser?

• Too difficult to find working 0-days

• Vendors also find browser bugs internally.

• many exploit mitigations.

• other hackers have already found and reported it

• yet, if you hacked the browser through the 0days?

• $$$, honor

Refer to slide for more details.

Why target browsers?

• Web Standards are continuously being updated.

• it means, new features are added continuously

• Has a lot of Attack Vectors.

• HTML, Image, Audio, Javascript, Video, 3D, WebRTC

• WebStorage, WebDatabase, …

WebBrowser has a lot web Vectors,

In this session, I use only javascript vector!

Web Standards
• ECMA Script 5,6,…7

• Javascript, ActionScript,

• WebGL

• WebAssembly

• HTML5

• CSS3

ECMA script is still being updated, Javascript is based on ECMA Script.

WebAssembly has been officially adopted by major browsers recently

Also, WebAssembly is an important vulnerability vector.

Why Javascript?
• DOM is hard…

• many bugs! but… (null deref, stack exhaust, …)

• often, even the developer doesn’t know the root cause.
(DOM Tree Hell)

• difficult to make working exploit.

• Javascript is also hard.

• Easier to figure out root cause than DOM. (more Intuitive.)

Well,
is JS Awesome?

• Nope!

• we have sandbox (which has to be bypassed)

DOM Bug example

• Safari — no Reward :[

• Chrome — Reward $1,000

let me explain about 1 bug in Chrome.

I received $1000 as reward.

DOM Bug example
CVE-2017-5052

Didn't figure out root
cause, someone said
just change DCHECK
to CHECK

After a while, they
found the root cause!

If you see the comment, the reviewer said ‘if we can’t figure out the root cause, let’s change the DCHECK to CHECK’.

But, after a while they found the cause.

Javascript engines?
Name

ChakraCore
(ch)

V8
(d8)

JavaScriptCore
(jsc)

Platform OpenSource?

Windows/Linux/
macOS

Windows/Linux/
macOS

Windows/Linux/
macOS

Refer to slide for more detail.

How to approach zero-days?

• fuzzing?

• code review?

fuzzing? code review? which one is better? what do you think?

I recommend both! Anyway, good fuzzers don’t need humans.

Why Fuzzing?

• You can create/test many test cases in a short time.

• While computer runs the fuzzer, you can focus on code
review.

• JS code review is bad for mental health. You can get
motivation from fuzzing results. :)

Refer to slide for more details.

reason why I do fuzzing?
Let’s do it!

Whatever

yeah.. that's why. seriously :)

Before making a fuzzer…

• What’s a good fuzzer?

• Get a crash well.

• Should have good code coverage

• Should create many test cases at the same time.

• Should classify unique crashes.

• Should have a crash minimizer.

Refer to slide for more details.

//Libfuzzer and AFL are guided code coverage fuzzer.

//in this session, I will only cover random fuzzers.

How do I get a crash well?

• No answer for the question.  
In my case, reference to public PoC code.

• In JS code, they have many |regress| files.

• Figure out the patterns in |regress| files.

• just observe the pattern, not the meaning

Refer to slide for more details.

v8 regress files

This is an example of v8 regress files. you can find it here: ‘http://cs.chromium.org’

Likewise, you can find regress files of other javascript engines.

CVE-2016-1857

Use After Free in Safari.

CVE-2016-5129

This is chrome case, bug type is side effect.

CVE-2017-11799

Finder : lokihardt

This is edge case, a bug type is invalid JIT.

CVE-2017-2547

Finder : lokihardt

Safari case, JIT optimization check fail.

CVE-2017-7061

Finder : lokihardt

Safari case, Incorrect optimization in Safari.

type confusion |i| value.

CVE-2017-5121

After reviewed PoC…

• PoC are mostly short.

• different from full exploit code.

• mostly used 1 object from Javascript Objects.

• (Array, Typed Array, Proxy,…)

• In recent years, Found mainly in JIT, asmJS and Wasm

Refer to slide for more details.

WebAssembly

All major browsers officially support WebAssembly.

WebAssembly

Use in Browser

for example, C -> WebAssembly, use in Browser

What Point of WASM would
be vulnerable?

Validation of Web Assembly Opcode WebAssembly Method Error

Validation of Web Assembly Opcode and

Just-In-Time
Name of JIT Compilers

Simple/Full JIT Compiler

Crankshaft

Baseline, DFG, FTL

This table shows the name of JIT Compilers for each Edge, Chrome, and Safari.

Tested on JSC
--dumpGeneratedBytecodes=true

JIT Example!

I dumped a simple javascript syntax to bytecode.

Function Example

I wrote the same function in different js syntax, and compared their bytecode to see if they were different.

They were same.

Create Array Example

This was also an experiment to compare the bytecode, but this time by creating arrays.

Both created arrays of same size. But new Array internally calls constructor. So, the bytecode were different.

What point of JIT would be
vulnerable?

JS Code Bytecode JIT

Generate
ByteCode Optimize

Code

What if JIT Compiler makes
Invalid Optimizing Code?

This is a simple diagram to show the process of making JIT’ed code.

I thought that the part in the red circle could be the weak point.

This is because it is difficultly to optimize user’s code.

part of my fuzzer

That is a template for Random Javascript Syntax (static).

When a method is called, a javascript syntax, matching the name of the method, is created by the generator.

part of my fuzzer
Array Object

Function Object

For instance, create method is internally similar to javascript object constructor.

The details in the syntax are random.

part of my fuzzer
Array Object Methods

Refer to slide for Array Object Methods.

part of my fuzzer

Also, I defined the WebAssembly Opcode Table and method call.

part of my fuzzer

This is fuzzer configuration file.

Defined options to required for fuzzer.

Problems to creating
random JS syntax

• Too many cases

• Hard to find pattern by hand.

• So, make template the pattern from 1day cases.

• Make random JS file through template.

But, there was a problem in generating random syntax.

It was difficult to insert new patterns and so, the generated files were similar.

So, we created templates for 1day PoC cases.

after that, the templates were used to generate javascript files.

We solved the problem!

• Parse 1-day PoC for making LEGO file

• Parse LEGO file to make new JS file.

• For the parser :

• Made rules for custom syntax -> LEGO

• Excluded whatever was not important

We decided to call the custom syntax ‘LEGO’.

LEGO example

For Example, change CVE-2016-5189 PoC file to LEGO Syntax

We will publish the convertor for LEGO on Github.

Fuzzer structure

1 Set

generator

crash monitor generate
testcase

JS Engine
With|(out)

ASAN

if
crash
caught

crash
collector

The fuzzer uses a simple structure. But it works well~

Fuzzing environment?

When you run fuzzer’s’ in your room :

++noise

When I was fuzzing at home, I was annoyed because of the noise.

Javascript
Fuzzing Factory!

Now, introducing Javascript Fuzzing Factory. JFF

with Docker

JFF is a Host/Fuzzer management solution which is based on Docker API.

I will show you a Demo

Introducing bugs found
by using Fuzzer!

ChakraCore Case

• Bug in Garbage Collector (maybe?)

• Status ; Reported

• Patched ; Alive

• Note ; It wasn’t crash on MS Edge.

ChakraCore Case

This bug is presumed to be a bug which occurs due to race condition between garbage Collect thread and array method, when they are repeatedly used.

JSC Case 1

• Description ; Memcpy argument overlapped through
Invalid JIT

• Status ; Reported

• Patched ; webkit patched, safari alive.

JSC Case 1

The red arrow points to the JIT code area.

At that address, appendMemcpy method is called with an invalid argument.

JSC Case 2

• Description ; Use After free in WatchpointSet::state()

• Status ; Reported

• Patched ; webkit patched(17/10/18), safari alive.

JSC Case 2

Forgot _proto_ when DFG adds WatchPointSet.

JSC Case 3

• Description ; invalid optimize DFG JIT

• Status ; Reported

• Patched ; webkit patched(17/11/08), safari alive.

JSC Case 3

shows demo

$ more ‘reum’
• Areum Lee

• Co-worker for this project

• Put this presentation in
English.

• CSS for JFF

• Made LEGO syntax

• Currently a senior in Sejong Univ.

• @l.areum (facebook)

QnA?

If you ask questions in english,

I will try to listen/speak english,

But It would be much better to talk
personally after this time,

or contact @sjh21a (facebook)

