
标题文本

» 正文级别 1
– 正文级别 2

•正文级别 3
– 正文级别 4

» 正文级别 5

HuiYu Wu@	Tencent	Security	Platform	Department

Hybrid	App	Security
Attack	and	Defense

About	Me

• Security	researcher	at	Tencent	Security	Platform	Department

• Focus	on	IoT	security	and	Mobile	security

• Bug	Hunter

• Winner	of	GeekPwn 2015	

• Blog	:	http://www.droidsec.cn

About	Tencent	Security	Platform	Department

Established	in	2005,	with	over	10	years	of	experience	in	cyber	
security,	Tencent	Security	Platform	Department	has	been	
dedicated	to	the	protection	of	QQ,	WeChat,	Tencent	Games	and	
other	critical	products.	

Our	security	research	team	has	found	60+	Google/Apple/Adobe	
vulnerabilities	in	last	years.

About	TSRC

Tencent	Security	Response	Center	(TSRC),	a	web	platform	
founded	by	us,	pioneered	the	vulnerability	reward	programs	in	
China.	We	hope	to	work	more	closely	with	the	security	community	
through	TSRC.

The	maximum	bonus	for	a	critical	vulnerability	is	about	$	75,000.

To	Learn	more	about	our	bug	bounty	program	and	submit	
vulnerability	reports:

https://en.security.tencent.com

Agenda
• What	is	hybrid	app

• Hybrid	mobile	app	framework	(Apache	Cordova)	

• Hybrid	app	security	model

• Attack	surface	of	hybrid	app

• How	to	secure	your	hybrid	app

• Conclusion

What	is	hybrid	app?

What	is	hybrid	app?

Advantages	of	Hybrid	App

Hybrid	Mobile	App	Framework

Apache	Cordova
Apache	Cordova

Cordova	Architecture

Cordova	Example	App
function	showPhoneNumber(name)	{
var successCallback =	function(contact)	{
alert("Phone	number:	"	+	contacts.phone);

}
var failureCallback =	...
cordova.exec(successCallback ,	failureCallback ,	"ContactsPlugin",	"find",[{"name"	:	name}]);

}

class	ContactsPlugin extends	CordovaPlugin {
boolean execute(String	action	,	CordovaArgs args,	CallbackContext callbackContext)	{
if	("find".equals(action))	{
String	name	=	args.get(0).name;
find(name,	callbackContext);
}	else	if	("create".equals(action))	...

}
void	find(String	name,	CallbackContext callbackContext)	{
Contact	contact =	query("SELECT	...	where	name="	+	name);
callbackContext.success(contact);

}
}

Cordova	Example	App

Cordova	Security	Mechanism

Domain	whitelisting	is	a	security	model	that	controls	access	to	
external	domains	over	which	your	application	has	no	control.	
Cordova	provides	a	configurable	security	policy	to	define	which	
external	sites	may	be	accessed.

Cordova	Security	Mechanism

Cordova	whitelist	plugin
1.Navigation	Whitelist
Controls	which	URLs	the	WebView	itself	can	be	navigated	to.	
<allow-navigation	href="http://example.com/*"	/>

2.Intent	Whitelist
Controls	which	URLs	the	app	is	allowed	to	ask	the	system	to	open.	
<allow-intent	href="http://*/*"	/>

3.Network	Request	Whitelist
Controls	which	network	requests	are	allowed	to	be	made.
<access	origin="http://google.com"	/>

Web	Security
(1)same	origin	policy	(SOP)
(2)Content	Security	Policy	(CSP)

Bridge	Security
(1)Origin	Check

Mobile	Security
(1)System Permission	Manage

Hybrid	App	Security	Model
Whitelist-based	security

From	the	security	perspective,	the	key	components	of	any	
hybrid	framework	are	the	bridge.In Android	system	WebView,	
developers	can	use	bridge	mechanism	to	implement	the	
interaction	between	JavaScript	and	Native	APIs.

Hybrid	App	Security	Model

Android	WebView	Bridges

JS	to	Native Bridge

（1）Interface-based	bridges	

var result	=	window.jsbridge.getXX();

->	

class	JsObject {

@JavascriptInterface

public	String	getXX()	{	return	"injectedObject";	}
}

webView.addJavascriptInterface(new	JsObject(),	"jsbridge");

Android	WebView Bridges

JS	to	Native Bridge
（2）Event-based	bridges

var result=prompt('[]','jsbridge://method?parm')

->	

public	boolean onJsPrompt(WebView	view,	String	url,	String	
message,	String	defaultValue,	JsPromptResult result)	{

if	url.getScheme.equals(“jsbridge”)......

}

Android	WebView Bridges

JS	to	Native Bridge

（3）URL	interposition-based	bridges

window.location.href="jsbridge://method?parm";

<iframe src="jsbridge://method?parm";>

->	

public	boolean shouldOverrideUrlLoading(WebView	view,	String	url)	
{	
if	url.getScheme.equals(“jsbridge”)......}

public	WebResourceResponse shouldInterceptRequest(WebView	
view,String url){
if	url.getScheme.equals(“jsbridge”)......}

Android	WebView Bridges

Native	to	JS

(1)loadUrl

WebView.loadUrl("javascript:callFromJava('call	from	java')");	

->	

function	callFromJava(str){console.log(str);}

Android	WebView Bridges

Native	to	JS

(2)evaluateJavascript (Android	4.4+)

WebView.evaluateJavascript("getGreetings()",	new	
ValueCallback<String>()	{

@Override
public	void	onReceiveValue(String	value)	{
Log.i(LOGTAG,	"onReceiveValue value="	+	value);

}}

->

function	getGreetings()	{return	1;}

Hybrid	App	Security	Model

Bridges

Illegal	calls

JavaScript

Native	APIs

Is	Origin	URL	in	whitelist?
call Intercept	Request

NO

YES

Inject	JS	code?
Origin	whitelist	bypass?

Exposed	bridge?

Intercept	all	request?

Whitelist-based	security

l XSS	Vulnerability

l Man-in-the-Middle	Attack

l Insecure	Whitelist

l Exported	JS	Bridge

l Incorrect	URL	interception

Attack	Surface	of	Hybrid	App

XSS	Vulnerability

if	a	web	application	running	within	hybrid	mobile	application	
suffers	from	an	XSS	vulnerability,	the	attacker	is	able	to	invoke	all	
exposed	methods	for	malicious	purposes.	

In	other	words,	the	attacker	is	able	to	access	the	native	
capabilities	and	resources	of	the	device	and	could	for	example	
easily	steal	contact	details,	take	pictures	or	locate	the	position	of		
user.

Attacker

XSS	Vulnerability

XSS	Vulnerability

How	to	use	a	XSS	vulnerability	to	steal	contacts

<img src=x	onerror=
"navigator.contacts.find(['displayName','phoneNumbers'],
function(c){
r='';
for(i=0;c[i];i++){
if(c[i].phoneNumbers&&c[i].phoneNumbers.length){
r+=c[i].displayName+c[i].phoneNumbers[0].value+'\n';

}
}
alert(r);

">

Inject	malicious	JS	Payload

If	any	content	from	a	whitelisted	origin	is	retrieved	over	HTTP(or	
not	properly	check	SSL	Certificates),	a	man-in-the-middle	attacker
—for	example,	a	malicious	Wi-Fi	access	point—can	inject	an	attack	
script	into	it.	This	script	will	be	treated	by	the	browser	as	if	it	came	
from	the	whitelisted	origin。

Man-in-the-Middle	Attack

Man-in-the-Middle	Attack

Use	BurpSuite	to intercept	http	Response	and	Inject	payload

Inject	malicious	JS	Payload to	JS	library	resources

Insecure	Cordova	Whitelist	Config

1.<allow-navigation	href="*"	/>
A	wildcard	can	be	used	to	whitelist	the	entire	network	over	HTTP	

and	HTTPS.

2.<allow-intent	href="*"	/>
Allow	all	unrecognized	URLs	to	open	installed	apps.

3.<access	origin="*"	/>
Don't	block	any	requests

Insecure	Whitelist

Regex	Bypass (CVE-2012-6637)

Not	registered	domains	/		Expired	Domains	/	Special	subdomain

(1)Pattern.compile("^https\\:\\/\\/.*[.]abc[.](com|net|cc|hk)$")
->http://abc.cc

(2)Pattern.compile("ˆhttps?://(.*\\.)?"	+	abc.com))
->
https://abc.com.evil.com

Insecure	Whitelist

Insecure	URL	check

if	url.getHost().contains(“abc.com”)...

if	url.getHost().startwith(“abc.com”)...
->
https://abc.com.evil.com

Insecure	Whitelist

Local	file	inclusion	+	Insecure	Storage

Insecure	Whitelist

Any	JavaScript	object	added	to	the	embedded	browser	by	the	
framework’s	Native	APIs	via	functions	such	as	'addJavascriptInterface'	
in		Android's	WebView	is	available	by	default	to	JavaScript	in	any	
iframe,	regardless	of	its	origin.

Exported	JS	Bridge

CVE-2012-6336	

function	execute(cmdArgs)	{
for	(var obj in	window)	{
if	("getClass"	in	window[obj])	{
alert(obj);
return

window[obj].getClass().forName("java.lang.Runtime")																
.getMethod("getRuntime",null).invoke(null,null).exec(cmdArgs);

}
}

}

Exported	JS	Bridge

Incorrect	URL	interception

GET POST XMLHttp Iframe WebSocket

shouldOverrideUrlLoading YES NO NO NO NO

shouldInterceptRequest YES NO YES YES NO

postUrl NO YES NO NO NO

Android	WebView allows	developers	to	intercept	and	prevent	
insecure		web	resources	from	being	loaded	by	implementing	the	
callback	functions.
If	developers	use	a	incorrect	URL interception	function,it	can	

lead	to	a	whitelist	bypass	security	vulnerability.

URL	interception	in	Android	WebView

Incorrect	URL	interception

CVE-2014-3501

In	order	to	ensure	that	a	Cordova	WebView	only	allows	requests	
to	URLs	in	the	configured	whitelist,	the	framework	overrides	
Android’s	shouldInterceptRequest()	method	.

As	of	Android	4.4	KitKat,	the	WebView	is	rendered	by	Chromium	
and	supports	WebSocket protocol.	An attacker	can	therefore	make	
use	of	a	WebSocket connection	to	bypass	the	Cordova	whitelisting	
mechanism.

new	WebSocket(“ws://127.0.0.1/xxx”)

Attack	Demo

Attack	hybrid	app	by	a	QR	code

Attack	Demo

How	to	secure	your	hybrid	app

Hybrid	App	Security	Model

Bridges

Illegal	calls

JavaScript

Native	APIs

Check Origin	URL &	Token
call Intercept	Request

NO

YES

Inject	JS	code?

Origin	whitelist	bypass?

Exposed	bridge?

Intercept	all	request?

CSP

Session	Token Session	Token

Enhanced	whitelist-based	security

•use	CSP	to protect	web	app

•SSL	Certificate	Pinning

•Use	session	token	to	protect	bridges

•Don't	use	iframe and	eval()

•Update	your	hybrid	app	framework	to	the	last	version

•Use	system	WebView for	outside	links

•Validate	all	user	input

•Remove	unused	plugins

How	to	secure	your	hybrid	app

use	CSP	to	protect	web app
On	Android	and	iOS,	the	network	request	whitelist		is	not	

able	to	filter	all	types	of	requests	(e.g.	<video>	&	WebSockets
are	not	blocked).	So,	in	addition	to	the	whitelist,	you	should	
use	a	Content	Security	Policy	<meta>	tag	on	all	of	your	pages.

CSP	Guide:
http://www.html5rocks.com/en/tutorials/security/content-
security-policy/

TIPS : By	default,	applying	a	CSP	disables	both	eval()	and	
inline	script	while	the	CSP	in	the	Cordova	template	disables	
inline	but	allows	eval().

How	to	secure	your	hybrid	app

SSL	Certificate	Pinning
The	idea	here	is	you	can	significantly	reduce	the	chances	of	a	

man-in-the-middle	attack	by	"pinning"	the	allowed	public	
certificates	accepted	by	your	app	when	making	the	connection	to	
highly	trusted,	official	certificate	authorities that	you	are	actually	
using.	

TIPS : using	android:debuggable="true"	in	the	Cordova	
application	manifest	will	permit	SSL	errors	such	as	certificate	chain	
validation	errors	on	self-signed	certs.

How	to	secure	your	hybrid	app

Use	session	token	to	protect	bridges
use	a	"session	token" can	prevent	unauthorized	access	to interface

bridges.There is	a	example “Bridge	Secret”	in	Cordova.

(1)Session	token	is	set	in	main	frame	origin	and	only	exposed	native	
method	is	an	init method.	The	SOP	prevents	foreign-origin	from	
accessing	the	token.

int generateBridgeSecret()	{
SecureRandom randGen =	new	SecureRandom();
expectedBridgeSecret =	randGen.nextInt(Integer.MAX_VALUE);
return	expectedBridgeSecret;

}

How	to	secure	your	hybrid	app

(2)If	init method	is	called	with	correct	session	token,	then	the	bridge	
exposes	additional	methods	dynamically.

prompt(argsJson,	'jsbridge:'+JSON.stringify([bridgeSecret,	service,	action,	
callbackId]));

->

private	boolean verifySecret(String	action,	int bridgeSecret)	throws	
IllegalAccessException {
......
if	(expectedBridgeSecret <	0	||	bridgeSecret !=	expectedBridgeSecret)	{

......
}else{….}}

How	to	secure	your	hybrid	app

How	to	secure	your	hybrid	app

Don't	use	iframe and	eval()

If	content	is	served	in	an	iframe from	a	whitelisted	domain,	
that	domain	will	have	access	to	the	native	bridge.	This	means	
that	if	you	whitelist	a	third-party	advertising	network	and	serve	
those	ads	through	an	iframe,	it	is	possible	that	a	malicious	ad	will	
be	able	to	break	out	of	the	iframe and	perform	malicious	actions.	

Use	The	JavaScript	function	eval incorrectly	can	open	your	code	
up	for	injection	attacks.

How	to	secure	your	hybrid	app

Update	your	hybrid	app	framework	to	the	last	version

13 CVE IDs	for Apache	Cordova（PhoneGap）

Include	8	bridge/whitelist	bypass	vulnerabilities

Beginning	July	11,	2016,	Google	Play	will	block	publishing	of	any	
new	apps	or updates	that	use	pre-4.1.1	versions	of	Apache	
Cordova.

https://support.google.com/faqs/answer/6325474

Use	system	WebView for	outside	links

Use	the	system	WebView when	opening	links	to	any	outside	
website.	This	is	much	safer	than	whitelisting	a	domain	name	and	
including	the	content	directly	in	your	application.

The	InAppBrowser plugin	In	Cordova		behaves	like	a	standard	
web	browser,	and	can't	access	Cordova	APIs.	For	this	reason,	the	
InAppBrowser plugin	is	recommended	if	you	need	to	load	third-
party	(untrusted)	content,	instead	of	loading	that	into	the	main	
Cordova	WebView.	

How	to	secure	your	hybrid	app

How	to	secure	your	hybrid	app

Validate	all	user	input

Always	validate	any	and	all	input	that	your	application	
accepts.	This	includes	usernames,	passwords,	dates,	uploaded	
media,	etc.	This	validation	should	also	be	performed	on	your	
server,	especially	before	handing	the	data	off	to	any	backend	
service.

Other	sources	where	data	should	be	validated:	user	
documents,	contacts,	push	notifications.

How	to	secure	you	hybrid	app

Remove	unused	plugins

Reducing	the	attack	surface	of	the	application	is	important	
to	reduce	the	impact	of	vulnerabilities	like	XSS,	particularly	
plugins	with	dangerous	functionality,	like	file,	camera	and	
contact	access.

Conclusion

• Hybrid	app	is	becoming	more	and	more	popular.

• There	is	a	large	attack	surface	in	hybrid	app,	including	mobile	
security	and	web	security.

• We	present some	suggestions	to	developers	to	ensure	the	
security	of	hybrid mobile app.

标题文本

» 正文级别 1
– 正文级别 2

•正文级别 3
– 正文级别 4

» 正文级别 5

Thank	You

droidsec.cn@gmail.com

1. https://cordova.apache.org/docs/en/latest/guide/appdev/security/index.html

2. https://packetstormsecurity.com/files/124954/apachecordovaphonegap-bypass.txt

3. http://taco.visualstudio.com/en-us/docs/cordova-security-platform/

4. https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-
27153/Apache-Cordova.html

5. https://labs.mwrinfosecurity.com/assets/BlogFiles/Fracking-With-Hybrid-Mobile-
Applications.compressed.pdf

6. https://dl.acm.org/citation.cfm?id=2990915

7. https://www.blackhat.com/docs/asia-15/materials/asia-15-Grassi-The-Nightmare-
Behind-The-Cross-Platform-Mobile-Apps-Dream.pdf

Reference

