
AOSP for the Masses

Attack Android Right Out of the Box
Dan Austin, Google

Fuzzing AOSP 
For the Masses

Dan Austin
Google
Android SDL Research Team



Exploitation: Find the Needle



Needles are Interesting



We’d like to find needles at scale



How can we do this?



Fuzzing



Fuzzing: What is it?

Generate ObserveExecute Notify



Should I fuzz?



Why should I fuzz?
● Ensures edge cases and unexpected input are properly handled

● Increases program robustness & code quality

● Tests for regressions

○ Fuzz-test to generate inputs that result in program crash

○ Leverage these inputs with future iterations of the program

● Low investment method to test complex systems



Android is a complex system. 

Complex systems have bugs. 

Bugs could result in security vulnerabilities..



Android: Lots of components



Android: Lots of components Userspace



Android: Lots of components Kernelspace



Android: Lots of components And it’s all fuzzable!



Android: Lots to focus on
Where do we start?

● Remotely accessible
○ Media (audio/video)
○ Parsing code (XML, etc.)
○ Fonts
○ WiFi/Bluetooth/Radio

● Allows for privesc or sandbox escape
○ Graphics
○ Kernel/Drivers
○ Firmware Interfaces

● Rarely executed == less likely to be tested

What would be a convenient place to search?



Android Open Source Project
Easier fuzzing with source-level tools

We provide the tools!

Bugs found are likely work on other targets

Fuzz once, test everywhere!



Fuzzing Android



Fuzzing Userspace Userspace



Fuzzing userspace: Sanitizers
LLVM Compile time tools allow for efficient dynamic analysis.

Two sanitizers currently supported in Android that can aid with fuzzing

● AddressSanitizer
○ source.android.com/devices/tech/debug/asan 

● SanitizerCoverage
○ clang.llvm.org/docs/SanitizerCoverage.html

https://source.android.com/devices/tech/debug/asan
https://clang.llvm.org/docs/SanitizerCoverage.html


AddressSanitizer (ASAN)
Fast memory error detector
Two parts:

● Compiler instrumentation
● Run-time library

ASAN can detect:
● Out-of-bounds accesses to heap, stack and globals
● Use-after-free
● Use-after-return (runtime flag ASAN_OPTIONS=detect_stack_use_after_return=1)
● Use-after-scope (clang flag -fsanitize-address-use-after-scope)
● Double-free, invalid free
● Memory leaks (experimental)



SanitizerCoverage
● Allows for simple code coverage instrumentation 
● Two parts:

○ Compiler instrumentation
○ Run-time library

● Inserts calls to user-definable functions at each
○ function
○ basic-block
○ edge 

● Can provide coverage reporting and visualization
● And be used to guide fuzzing sessions!



Fuzzing userspace: libFuzzer

● In-process, in-memory fuzzing library

● Allows for coverage-guided fuzzing

● Function-level, tends to be faster than 
traditional fuzzing

● Fuzzers are unit-test friendly

● And easy to write!



Sanitizers & LibFuzzer walkthrough
Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test



Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

Sanitizers & LibFuzzer walkthrough



Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

The provided input did not cause a 
crash. Use information from Coverage 
Sanitizer to determine if a new path 
was discovered.

Sanitizers & LibFuzzer walkthrough



Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

The provided input did not cause a 
crash. Use information from Coverage 
Sanitizer to determine if a new path 
was discovered.

LibFuzzer processes the input and sends it back for 
inclusion into the corpus. Input selection & 
execution continues.

Sanitizers & LibFuzzer walkthrough



Corpus

LibFuzzer

Crash

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

The provided input did not cause a 
crash. Use information from Coverage 
Sanitizer to determine if a new path 
was discovered.

LibFuzzer processes the input and sends it back for 
inclusion into the corpus. Input selection & 
execution continues.

The provided input caused a crash!

Sanitizers & LibFuzzer walkthrough: Crash!



Corpus

LibFuzzer

Crash

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

The provided input did not cause a 
crash. Use information from Coverage 
Sanitizer to determine if a new path 
was discovered.

LibFuzzer processes the input and sends it back for 
inclusion into the corpus. Input selection & 
execution continues.

The provided input caused a crash!

Crash details are processed by ASAN, including potential 
cause, memory addresses, stack trace, etc. 

Sanitizers & LibFuzzer walkthrough: Crash!



Corpus

LibFuzzer

Crash

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

The provided input caused a crash!

The provided input did not cause a 
crash. Use information from Coverage 
Sanitizer to determine if a new path 
was discovered.

Crash details are processed by ASAN, including potential 
cause, memory addresses, stack trace, etc. 

ASAN passes crash metadata and 
input that caused the crash back to 
LibFuzzer

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

LibFuzzer processes the input and sends it back for 
inclusion into the corpus. Input selection & 
execution continues.

Sanitizers & LibFuzzer walkthrough: Crash!



Corpus

LibFuzzer

Crash

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Element from corpus is selected by libfuzzer

That element is mutated/truncated by 
libfuzzer and passed to the function 
under test.

The provided input caused a crash!

The provided input did not cause a 
crash. Use information from Coverage 
Sanitizer to determine if a new path 
was discovered.

Crash details are processed by ASAN, including potential 
cause, memory addresses, stack trace, etc. 

ASAN passes crash metadata and 
input that caused the crash back to 
LibFuzzer

LibFuzzer processes the input and sends it back for 
inclusion into the corpus. Crash metadata passed to 
user.

Corpus

LibFuzzer

Address Sanitizer Logic

Coverage Sanitizer Logic

Function Under Test

Sanitizers & LibFuzzer walkthrough: Crash!



Fuzzing Kernelspace Kernelspace



Fuzzing Kernelspace: KASAN
TL;DR: ASAN in the Linux kernel

Dynamic memory error detector capable of discovering:

● Use after free
● Out of bounds access

Implemented using:

● Compile time modifications (gcc 4.9.2 or later)
● Custom memory handling (Shadow memory)

Enabled with CONFIG_KASAN & CONFIG_KASAN_INLINE on Android kernels



Fuzzing Kernelspace: KCOV

● TL;DR: SanitizerCoverage in the Kernel

● Allows for simple code coverage instrumentation 

● Basic-block level instrumentation

● Enabled with CONFIG_KCOV

● Implemented with kernel debugfs extension that collects and exposes 
coverage per-thread



Fuzzing Kernelspace: syzkaller
Coverage guided Linux syscall fuzzer

Supported in android on pixel devices

Requires a kernel with KASAN and KCOV enabled

Uses syscall descriptions to generate “programs” that correspond to fuzzing inputs



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

Program from corpus is selected by 
syzkaller

syzkaller walkthrough



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

Program from corpus is selected by 
syzkaller

That element is mutated/ 
arguments modified by syzkaller 
and runs in the modified kernel.

syzkaller walkthrough



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

Program from corpus is selected by 
syzkaller

That element is mutated/ 
arguments modified by syzkaller 
and runs in the modified kernel.

The provided input did not cause a 
crash. Use information from KCOV to 
determine if a syscall was executed that 
discovered a new path.

syzkaller walkthrough



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

Program from corpus is selected by 
syzkaller

That element is mutated/ 
arguments modified by syzkaller 
and runs in the modified kernel.

The provided input did not cause a 
crash. Use information from KCOV to 
determine if a syscall was executed that 
discovered a new path.

A new path was discovered! syzkaller minimizes the 
program and adds it to the corpus.

syzkaller walkthrough



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

That element is mutated/ 
arguments modified by syzkaller 
and run in the modified kernel.

Element from corpus is selected by 
syzkaller The provided input did not cause a 

crash. Use information from KCOV to 
determine if a syscall was executed that 
discovered a new path.

Crash

The program caused a crash!

A new path was discovered! syzkaller minimizes the 
program and adds it to the corpus.

syzkaller walkthrough: crash!



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

That element is mutated/ 
arguments modified by syzkaller 
and run in the modified kernel.

Element from corpus is selected by 
syzkaller The provided input did not cause a 

crash. Use information from KCOV to 
determine if a syscall was executed that 
discovered a new path.

Crash

The program caused a crash!

A new path was discovered! syzkaller minimizes the 
program and adds it to the corpus.

Crash details are processed by KASAN, including 
potential cause, memory addresses, stack trace, etc. 

syzkaller walkthrough: crash!



Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

That element is mutated/ 
arguments modified by syzkaller 
and run in the modified kernel.

Element from corpus is selected by 
syzkaller The provided input did not cause a 

crash. Use information from KCOV to 
determine if a syscall was executed that 
discovered a new path.

Crash

The program caused a crash! Crash details are processed by KASAN, including 
potential cause, memory addresses, stack trace, etc. 

syzkaller reads KASAN provided 
crash metadata and input program

A new path was discovered! syzkaller minimizes the 
program and adds it to the corpus.

syzkaller walkthrough: crash!



syzkaller walkthrough: crash!
Program 
Corpus

syzkaller

KASAN

KCOV

Kernel component 
under test

That element is mutated/ 
arguments modified by syzkaller 
and run in the modified kernel.

Element from corpus is selected by 
syzkaller The provided input did not cause a 

crash. Use information from KCOV to 
determine if a syscall was executed that 
discovered a new path.

Crash

The program caused a crash! Crash details are processed by KASAN, including 
potential cause, memory addresses, stack trace, etc. 

syzkaller reads KASAN provided 
crash metadata and input program

syzkaller processes the input and sends it back for 
inclusion into the corpus. Crash metadata passed to 
user via syzkaller interface.



Repeatable and organized fuzzing

Generate

Observe

Execute

Notify



Repeatable and organized fuzzing: Tradefed
Continuous test framework integrated into Android

Basically, Java classes + adb

Built in support for different types of tests

Supports test scheduling, parallelizable tests

Also handles device recovery



Repeatable and organized fuzzing: Test Harness

+



Repeatable and organized fuzzing: Corpora
Fuzzers need seed inputs

New paths correspond to new inputs

Multiple inputs can correspond to the same path

libFuzzer can keep corpus size reasonable



Repeatable and organized fuzzing: Preparation
What to gather:

● Device specifics
● Android Version Information
● Fuzzer
● Offending input(s)
● Crash information

Test with TF for automation & simple reproduction

Package & send our way!



Android Vulnerability Reward Program
Android recognizes contributions of security researchers

and we provide monetary rewards!

For submission details:

sites.google.com/site/bughunteruniversity/improve/how-to-submit-an-android-platform-bug-report

Rules and Pricing information:

www.google.com/about/appsecurity/android-rewards

https://sites.google.com/site/bughunteruniversity/improve/how-to-submit-an-android-platform-bug-report
https://www.google.com/about/appsecurity/android-rewards


Keep on fuzzing
Adding new fuzzing engines!

New fuzzing techniques!

Better kernel support!



References
source.android.com/devices/tech/debug/asan

clang.llvm.org/docs/SanitizerCoverage.html

source.android.com/devices/tech/debug/sanitizers

llvm.org/docs/LibFuzzer.html

source.android.com/devices/tech/debug/kasan-kcov

github.com/google/syzkaller

source.android.com/devices/tech/test_infra/tradefed/

sites.google.com/site/bughunteruniversity/improve/how-to-submit-an-android-platform-bug-report

www.google.com/about/appsecurity/android-rewards

https://source.android.com/devices/tech/debug/asan
https://clang.llvm.org/docs/SanitizerCoverage.html
https://source.android.com/devices/tech/debug/sanitizers
http://llvm.org/docs/LibFuzzer.html
https://source.android.com/devices/tech/debug/kasan-kcov
http://github.com/google/syzkaller
https://source.android.com/devices/tech/test_infra/tradefed/
https://sites.google.com/site/bughunteruniversity/improve/how-to-submit-an-android-platform-bug-report
https://www.google.com/about/appsecurity/android-rewards


Happy fuzzing!

Questions?


