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Exploitation: Find the Needle



Needles are Interesting



We’d like to find needles at scale



How can we do this?



Fuzzing



Fuzzing: What is it?

Generate ObserveExecute Notify



Should I fuzz?



Why should I fuzz?
● Ensures edge cases and unexpected input are properly handled

● Increases program robustness & code quality

● Tests for regressions

○ Fuzz-test to generate inputs that result in program crash

○ Leverage these inputs with future iterations of the program

● Low investment method to test complex systems



Android is a complex system. 

Complex systems have bugs. 

Bugs could result in security vulnerabilities..



Android: Lots of components



Android: Lots of components Userspace



Android: Lots of components Kernelspace



Android: Lots of components And it’s all fuzzable!



Android: Lots to focus on
Where do we start?

● Remotely accessible
○ Media (audio/video)
○ Parsing code (XML, etc.)
○ Fonts
○ WiFi/Bluetooth/Radio

● Allows for privesc or sandbox escape
○ Graphics
○ Kernel/Drivers
○ Firmware Interfaces

● Rarely executed == less likely to be tested

What would be a convenient place to search?



Android Open Source Project
Easier fuzzing with source-level tools

We provide the tools!

Bugs found are likely work on other targets

Fuzz once, test everywhere!



Fuzzing Android



Fuzzing Userspace Userspace



Fuzzing userspace: Sanitizers
LLVM Compile time tools allow for efficient dynamic analysis.

Two sanitizers currently supported in Android that can aid with fuzzing

● AddressSanitizer
○ source.android.com/devices/tech/debug/asan 

● SanitizerCoverage
○ clang.llvm.org/docs/SanitizerCoverage.html

https://source.android.com/devices/tech/debug/asan
https://clang.llvm.org/docs/SanitizerCoverage.html


AddressSanitizer (ASAN)
Fast memory error detector
Two parts:

● Compiler instrumentation
● Run-time library

ASAN can detect:
● Out-of-bounds accesses to heap, stack and globals
● Use-after-free
● Use-after-return (runtime flag ASAN_OPTIONS=detect_stack_use_after_return=1)
● Use-after-scope (clang flag -fsanitize-address-use-after-scope)
● Double-free, invalid free
● Memory leaks (experimental)



SanitizerCoverage
● Allows for simple code coverage instrumentation 
● Two parts:

○ Compiler instrumentation
○ Run-time library

● Inserts calls to user-definable functions at each
○ function
○ basic-block
○ edge 

● Can provide coverage reporting and visualization
● And be used to guide fuzzing sessions!



Fuzzing userspace: libFuzzer

● In-process, in-memory fuzzing library

● Allows for coverage-guided fuzzing

● Function-level, tends to be faster than 
traditional fuzzing

● Fuzzers are unit-test friendly

● And easy to write!
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Fuzzing Kernelspace Kernelspace



Fuzzing Kernelspace: KASAN
TL;DR: ASAN in the Linux kernel

Dynamic memory error detector capable of discovering:

● Use after free
● Out of bounds access

Implemented using:

● Compile time modifications (gcc 4.9.2 or later)
● Custom memory handling (Shadow memory)

Enabled with CONFIG_KASAN & CONFIG_KASAN_INLINE on Android kernels



Fuzzing Kernelspace: KCOV

● TL;DR: SanitizerCoverage in the Kernel

● Allows for simple code coverage instrumentation 

● Basic-block level instrumentation

● Enabled with CONFIG_KCOV

● Implemented with kernel debugfs extension that collects and exposes 
coverage per-thread



Fuzzing Kernelspace: syzkaller
Coverage guided Linux syscall fuzzer

Supported in android on pixel devices

Requires a kernel with KASAN and KCOV enabled

Uses syscall descriptions to generate “programs” that correspond to fuzzing inputs
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syzkaller walkthrough: crash!
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Repeatable and organized fuzzing

Generate

Observe

Execute

Notify



Repeatable and organized fuzzing: Tradefed
Continuous test framework integrated into Android

Basically, Java classes + adb

Built in support for different types of tests

Supports test scheduling, parallelizable tests

Also handles device recovery



Repeatable and organized fuzzing: Test Harness

+



Repeatable and organized fuzzing: Corpora
Fuzzers need seed inputs

New paths correspond to new inputs

Multiple inputs can correspond to the same path

libFuzzer can keep corpus size reasonable



Repeatable and organized fuzzing: Preparation
What to gather:

● Device specifics
● Android Version Information
● Fuzzer
● Offending input(s)
● Crash information

Test with TF for automation & simple reproduction

Package & send our way!



Android Vulnerability Reward Program
Android recognizes contributions of security researchers

and we provide monetary rewards!

For submission details:

sites.google.com/site/bughunteruniversity/improve/how-to-submit-an-android-platform-bug-report

Rules and Pricing information:

www.google.com/about/appsecurity/android-rewards

https://sites.google.com/site/bughunteruniversity/improve/how-to-submit-an-android-platform-bug-report
https://www.google.com/about/appsecurity/android-rewards


Keep on fuzzing
Adding new fuzzing engines!

New fuzzing techniques!

Better kernel support!
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Happy fuzzing!

Questions?


