
Cyber Grand Shellphish

POC 2016

HEX on the beach

Shellphish?

● Founded in 2004
● Oldest? Capture the Flag team around
● Semi-successful

○ Won DEFCON CTF 2005
○ Qualified for DEFCON CTF every year but 2007 or so

● Hackademics at heart

DARPA Grand Challenges
Self-driving Cars Robots

DARPA Cyber Grand Challenge
Programs!

● "Look at the code and see what you can find"
● Requires substantial expertise

○ Analysis is as good as the person performing it
● Allows for the identification of complex vulnerabilities
● Expensive, does not scale

Past: Manual Vulnerability Analysis

● "Run these tools and verify/expand the results"
● Tools help in identifying areas of interest

○ Ruling out known code
○ Identifying potential vulnerabilities
○ Generate shellcode

● A human is involved, expertise and scale are still issues

Current: Tool-assisted Vuln Analysis

● "Run this tool and it will find the vulnerability"
○ … and generate an exploit
○ … and generate a patch

● Requires well-defined models for the vulnerabilities
● Which vulnerabilities? Must be modeled
● How to scale?
● The problem with halting…

Future: Automated Vuln Analysis

2015 20162014

Regist
ratio

n deadlin
e

Shellp
hish

 si
gns u

p!
2013

1st
co

mmit t
o th

e CRS!

2nd co
m

m
it

to
 th

e C
RS!

Quals!

3 w
eeks

 of in
sa

nity

Finals!

3 m
onths o

f in
sa

nity

“C
ode fre

eze
”

Final c
ommit t

o th
e CRS!

Sco
red eve

nt 1

Sco
red eve

nt 2

DARPA Cyber Grand Challenge

● Leverage CTF style to advance science
● Completely autonomous
● No team to team traffic
● Patches and exploits fielded through API (TI)
● Network traffic available via tap
● Big $$$ on the line (3.75 million USD)

○ Lots of clarifications needed (68 pages of FAQ)
○ Roboter over air-gap to transfer data one-way (out)

Organized as a Attack/Defense CTF

analyze

pwn

patch

Analyze
● DECREE is Linux-inspired environment, only 7 syscalls

○ transmit / receive / fdwait (≈ select)

○ allocate / deallocate

○ random

○ terminate

● No need to model the POSIX API
● Otherwise real(istic) programs!

● No filesystem → No flag?

● CGC Quals: Crash = Exploit

● CGC Finals: Two types of exploits

○ "flag overwrite": set a register to X, crash at Y

○ "flag read": leak the "secret flag" from memory

Pwn

Patch

int main() { return 0; }

fails functionality checks...

signal(SIGSEGV, exit)

inline QEMU-based CFI?

performance penalties...

no signal handling!

● Divided in 96 rounds, with short breaks between rounds
● API access to Challenge Binaries (CBs) for teams’ CRSs

○ Each CB provides a service (e.g., an HTTP server)
○ Initially, all teams run the same binaries for each service

● Each round: score for each unique (team, service) tuple

CGC Final Event (CFE)

● Availability: how badly did you f*ck up the binary?
● Security: did you defend against all exploits?
● Evaluation: how many teams did you pwn?

CGC Final Event (CFE)

Our Cyber Reasoning System (CRS)

Completely autonomous system
● Patch
● Crash
● Exploit

Computational resources provided:
● 1,280 cores; 16TB memory

Mechanical Phish (CFE)

Vulnerable
Binary

Proposed
patches

Crashes

Automatic
Testing

Exploit

Patched
Binary

Automatic
Vulnerability

Finding

Automatic
Vulnerability
Patching

Automatic
Exploitation

Proposed
Exploits

Mechanical Phish (CFE)

● Infrastructure Availability
○ (Almost) No event can cause a catastrophic downtime

● Analysis Scalability
○ Efficiently and autonomously directing fuzzing and state exploration

● Performance/Security Trade-off
○ Many patches, many approaches: which patched binary to field?

Challenges

Code Freeze

oops!

Tue 2 Aug, 23:54
~15 hours before access shutdown

Farnsworth

Meister

TI API IDS tap

Ambassador

Scriba

Network
Dude

Poll Creator

Tester

Patcherex

AFL Driller

Colorguard

Rex POV Fuzzer

POV Tester

Worker

Ambassador and Scriba

Ambassador:
Talk with Team Interface API
● Update Farnsworth

Scriba:
Submission Decision Maker
● Which exploit to launch against which team?
● Which patch to field?

Farnsworth

Object-relational model for database:
● What CS are fielded this round?
● Do we have crashes?
● Do we have a good patch?
● ...

Our ground truth and the only
component reasonably well tested*
* 69% coverage

Meister

Job scheduler:
● Looks at game state
● Asks creators for jobs
● Schedules them based on priority

● Binary analysis framework
developed at UC Santa Barbara

● Supports variety of architectures
○ x86, MIPS, ARM, PPC, etc. (all 32 and 64 bit)

● Open-source, free for commercial use (!)
○ http://angr.io
○ https://github.com/angr
○ angr@lists.cs.ucsb.edu

angr

Fuzzing

Symbolic
Execution

"Uncrasher"

Network
Traffic

How Do We Find Crashes?

● Automated procedure to send inputs and record safety
condition violations as crashes
○ Assumption: crashes are potentially exploitable

● Several dimensions in the fuzzing space
○ How to supply inputs to the program under test?
○ How to generate inputs?
○ How to find more “relevant” crashes?
○ How to change inputs between runs?

● Goal: Maximized effectiveness of the process

Fuzzing

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!
1 ⇒ "You lose!"
593 ⇒ "You lose!"
4 ⇒ "You lose!"
498 ⇒ "You lose!"
42 ⇒ "You win!"

Fuzzing

x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!
1 ⇒ "You lose!"
593 ⇒ "You lose!"
4 ⇒ "You lose!"
498 ⇒ "You lose!"
42 ⇒ "You lose!"
3 ⇒ "You lose!"

……….
57 ⇒ "You lose!"

Fuzzing

AFL

● Very fast!
● Very effective!
● Unable to deal with certain situations:

○ Magic numbers
○ Hashes
○ Specific identifiers

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

angr

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

1337

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

angr

Fuzzing

good at finding
solutions for general

inputs

Symbolic
Execution

good at find solutions
for specific inputs

Driller = angr + AFL

Test Cases

Driller

"Cheap" fuzzing
coverage

Test Cases

“Y”

“X”

Driller

!

"Cheap" fuzzing
coverage

Test Cases

"Y"

"X"

Dynamic Symbolic
Execution

Driller

"Cheap" fuzzing
coverage

Test Cases

"Y"

"X"

Dynamic Symbolic
Execution

"CGC_MAGIC"

New test cases
generated

Driller

"Cheap" fuzzing
coverage

Test Cases

"Y"

"X"

Dynamic Symbolic
Execution

"CGC_MAGIC"

New test cases
generated "CGC_MAGICY"

Driller

Automatic Exploitation (Simplified)
typedef struct component {

char name[32];
int (*do_something)(int arg);

} comp_t;

comp_t *initialize_component(char *cmp_name) {
int i = 0;
struct component *cmp;

cmp = malloc(sizeof(struct component));
cmp->do_something = sample_func;

while (*cmp_name)
cmp->name[i++] = *cmp_name++;

cmp->name[i] = ‘\0’;
return cmp;

}
x = get_input();
cmp = initialize_component(x);
cmp->do_something(1);

HEAP
char name[32];

int (*do_something)(int arg)

Symbolic Byte[0]
‘\0’

&sample_func

Symbolic Byte[0]
Symbolic Byte[1]
‘\0’

Symbolic Byte[0]
Symbolic Byte[1]
Symbolic Byte[2]
‘\0’

Symbolic Byte[0]
Symbolic Byte[1]
Symbolic Byte[2]
Symbolic Byte[3]
Symbolic Byte[4]
Symbolic Byte[5]
Symbolic Byte[6]
Symbolic Byte[7]
...

Symbolic Byte[32] …
Symbolic Byte[36]

‘\0’

call <symbolic byte[36:32]>

1. Turning the state into an exploited state

2. Constrain buffer to contain our shellcode

Automatic Exploitation (Simplified)

angr

assert state.se.symbolic(state.regs.pc)

angr

buf_addr = find_symbolic_buffer(state, len(shellcode))
mem = state.memory.load(buf_addr, len(shellcode))
state.add_constraints(mem == state.se.bvv(shellcode))

3. Constrain PC to point to the buffer

4. Synthesize!

angr

state.se.add_constraints(state.regs.pc == buf_addr)

angr

exploit = state.posix.dumps(0)

Automatic Exploitation (Simplified)

Vulnerable Symbolic State (PC hijack)

+ Constraints to make PC point to shellcode

Constraints to add shellcode to the address space

Exploit

+

Automatic Exploitation (Simplified)

Exploit Techniques

● Circumstantial
● Shellcode
● ROP
● Arbitrary Read - Point to Flag
● Arbitrary Read/Write - Exploration
● Write-What-Where

Colorguard: Flag Page Leaks
● Make only the flag page symbolic

● Everything else is completely concrete

○ Significantly faster

○ Can execute most basic block with Unicorn

● When cores are idle on the CRS, trace all our test cases

● Solved DEFCON CTF LEGIT_00009 challenge

Patching Backend:
● Detour
● Reassembler
● Reassembler Optimized

Patches:
● Insert code
● Insert data
● …

Patching Techniques:
● Stack randomization
● Return pointer encryption
● ...

Patcherex
Unpatched Binary

Patching Backend

Patched Binary

Patching Techniques

Patches

Detect QEMU

xor eax, eax
inc eax
push eax
push eax
push eax
fld TBYTE PTR [esp]
fsqrt

Adversarial Patches 1/2

Transmit the flag
● To stderr!

Backdoor
● Hash-based challenge-response backdoor
● Not cryptographically secure (can be pre-computed)
● Good enough to defeat automatic systems (online > exec timeout)

Adversarial Patches 2/2

Generic Patches
● Return pointer encryption
● Protect indirect calls/jmps
● Extended Malloc allocations
● Randomly shift the stack (ASLR)
● Clean uninitialized stack space
● ...

CFE Strategies / Techniques

Defense:
● Do not evaluate patches locally, too unreliable
● Do not deploy IDS rules, too dangerous
● Only briefly analyze patches from other teams
● Deploy patches immediately

Offense:
● Pwn as much as possible

CFE Statistics 1/3

● 82 Challenge Sets fielded
● 2442 Exploits generated
● 1709 Exploits for 14/82 CS with 100% Reliability
● Longest exploit: 3791 lines of C code
● Shortest exploit: 226 lines of C code
● crackaddr: 517 lines of C code

100% reliable exploits generated for:
● CROMU_000{46,51,55,65,94,98}
● KPRCA_00{065,094,112}
● NRFIN_000{52,59,63}
● YAN01_000{15,16}

Rematch Challenges:
● SQLSlammer (CROMU_00094)
● crackaddr (CROMU_00098)

CFE Statistics 2/3

Vulnerabilities in CS we exploited:
● CWE-20 Improper Input Validation
● CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
● CWE-121: Stack-based Buffer Overflow
● CWE-122: Heap-based Buffer Overflow
● CWE-126: Buffer Over-read
● CWE-131: Incorrect Calculation of Buffer Size
● CWE-190: Integer Overflow or Wraparound
● CWE-193 Off-by-one Error
● CWE-201: Information Exposure Through Sent Data
● CWE-202: Exposure of Sensitive Data Through Data Queries
● CWE-681: Incorrect Conversion between Numeric Types
● CWE-787: Out-of-bounds Write
● CWE-788: Access of Memory Location After End of Buffer

CFE Statistics 3/3

CFE Pwning Statistics

Team Flags Captured (49 rounds | all) CSes Pwned (49 rounds | all)

Shellphish 206 402 6 15

CodeJitsu 59 392 3 9

DeepRed 154 265 3 6

TECHx 66 214 2 4

Disekt 101 210 5 6

ForAllSecure 185 187 10 11

CSDS 20 22 1 2

CFE Patching Statistics

Team Defended CS-Rounds
(49 rounds | all)

CSes Compromised
(49 rounds | all)

Shellphish 29 68 7 12

TechX 27 61 7 14

DeepRed 32 87 6 15

ForAllSecure 54 160 7 16

CodeJitsu 61 104 9 16

Disket 66 127 9 17

CSDS 108 189 9 18

CFE St*p!d Bugs

● Network traffic synchronization

● Race condition in submission logic

● Slow scheduling by Kubernetes

Open source all the code!

Farnsworth

Meister

TI API IDS tap

Ambassador

Scriba

Network
Dude

Poll Creator

Tester

Patcherex

AFL Driller

Colorguard

Rex POV Fuzzer

POV Tester

Worker

Open Source! BSD license!

https://github.com/mechaphish

https://github.com/shellphish

https://github.com/mechaphish
https://github.com/mechaphish
https://github.com/shellphish
https://github.com/shellphish

On the Shoulders of Giants

AFL
angr

Unicorn
Engine

Capstone
EngineVEX

DEFCON CTF 2016:
● CRS assisted with 5 exploits
● Human exploration → CRS exploitation

○ Semantic understanding of interactions/protocols helps
● Backdoors!

Human Augmentation

Thank you! Stay in touch!

twitter: @shellphish
email: team@shellphish.net or cgc@shellphish.net
irc: #shellphish on freenode

twitter team:
@anton00b - @caovc - @giovanni_vigna - @jac_arc - @ltFish_ -
@machiry_msdic - @nebirhos - @rhelmot - @zardus

Student? Looking for an internship? Master thesis? Wanting to do a PhD?

mailto:team@shellphish.net
mailto:cgc@shellphish.net

