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HEX on the beach



Shellphish?

● Founded in 2004
● Oldest? Capture the Flag team around
● Semi-successful

○ Won DEFCON CTF 2005
○ Qualified for DEFCON CTF every year but 2007 or so

● Hackademics at heart





DARPA Grand Challenges
Self-driving Cars Robots



DARPA Cyber Grand Challenge
Programs!



● "Look at the code and see what you can find"
● Requires substantial expertise 

○ Analysis is as good as the person performing it
● Allows for the identification of complex vulnerabilities 
● Expensive, does not scale

Past: Manual Vulnerability Analysis



● "Run these tools and verify/expand the results"
● Tools help in identifying areas of interest

○ Ruling out known code
○ Identifying potential vulnerabilities
○ Generate shellcode

● A human is involved, expertise and scale are still issues

Current: Tool-assisted Vuln Analysis



● "Run this tool and it will find the vulnerability"
○ … and generate an exploit
○ … and generate a patch

● Requires well-defined models for the vulnerabilities
● Which vulnerabilities? Must be modeled
● How to scale?
● The problem with halting…

Future: Automated Vuln Analysis
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DARPA Cyber Grand Challenge



● Leverage CTF style to advance science
● Completely autonomous
● No team to team traffic
● Patches and exploits fielded through API (TI)
● Network traffic available via tap
● Big $$$ on the line (3.75 million USD)

○ Lots of clarifications needed (68 pages of FAQ)
○ Roboter over air-gap to transfer data one-way (out)

Organized as a Attack/Defense CTF





analyze

pwn

patch



Analyze
● DECREE is Linux-inspired environment, only 7 syscalls

○ transmit / receive / fdwait (≈ select)

○ allocate / deallocate

○ random

○ terminate

● No need to model the POSIX API
● Otherwise real(istic) programs!



● No filesystem → No flag?

● CGC Quals: Crash = Exploit

● CGC Finals: Two types of exploits

○ "flag overwrite": set a register to X, crash at Y

○ "flag read": leak the "secret flag" from memory

Pwn



Patch

int main() { return 0; }

fails functionality checks...

signal(SIGSEGV, exit)

inline QEMU-based CFI?

performance penalties...

no signal handling!



● Divided in 96 rounds, with short breaks between rounds
● API access to Challenge Binaries (CBs) for teams’ CRSs

○ Each CB provides a service (e.g., an HTTP server)
○ Initially, all teams run the same binaries for each service

● Each round: score for each unique (team, service) tuple

CGC Final Event (CFE)



● Availability: how badly did you f*ck up the binary?
● Security: did you defend against all exploits?
● Evaluation: how many teams did you pwn?

CGC Final Event (CFE)



Our Cyber Reasoning System (CRS)

Completely autonomous system
● Patch
● Crash
● Exploit

Computational resources provided:
● 1,280 cores; 16TB memory

Mechanical Phish (CFE)
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Mechanical Phish (CFE)



● Infrastructure Availability
○ (Almost) No event can cause a catastrophic downtime

● Analysis Scalability
○ Efficiently and autonomously directing fuzzing and state exploration

● Performance/Security Trade-off 
○ Many patches, many approaches: which patched binary to field?

Challenges





Code Freeze



oops!





Tue 2 Aug, 23:54
~15 hours before access shutdown
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Ambassador and Scriba

Ambassador:
Talk with Team Interface API
● Update Farnsworth

Scriba:
Submission Decision Maker
● Which exploit to launch against which team?
● Which patch to field?



Farnsworth

Object-relational model for database:
● What CS are fielded this round?
● Do we have crashes?
● Do we have a good patch?
● ...

Our ground truth and the only
component reasonably well tested*
* 69% coverage



Meister

Job scheduler:
● Looks at game state
● Asks creators for jobs
● Schedules them based on priority



● Binary analysis framework
developed at UC Santa Barbara

● Supports variety of architectures
○ x86, MIPS, ARM, PPC, etc. (all 32 and 64 bit)

● Open-source, free for commercial use (!)
○ http://angr.io 
○ https://github.com/angr
○ angr@lists.cs.ucsb.edu

angr





Fuzzing

Symbolic 
Execution

"Uncrasher"

Network 
Traffic

How Do We Find Crashes?



● Automated procedure to send inputs and record safety 
condition violations as crashes
○ Assumption: crashes are potentially exploitable

● Several dimensions in the fuzzing space
○ How to supply inputs to the program under test?
○ How to generate inputs?
○ How to find more “relevant” crashes?
○ How to change inputs between runs?

● Goal: Maximized effectiveness of the process

Fuzzing



x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!
1 ⇒ "You lose!"
593 ⇒ "You lose!"
4 ⇒ "You lose!"
498 ⇒ "You lose!"
42 ⇒ "You win!"

Fuzzing



x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!
1 ⇒ "You lose!"
593 ⇒ "You lose!"
4 ⇒ "You lose!"
498 ⇒ "You lose!"
42 ⇒ "You lose!"
3 ⇒ "You lose!"

……….
57 ⇒ "You lose!"

Fuzzing



AFL

● Very fast!
● Very effective!
● Unable to deal with certain situations:

○ Magic numbers
○ Hashes
○ Specific identifiers



x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

angr



x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

1337

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

angr



Fuzzing

good at finding 
solutions for general 

inputs

Symbolic 
Execution

good at find solutions 
for specific inputs

Driller = angr + AFL



Test Cases

Driller



"Cheap" fuzzing 
coverage

Test Cases

“Y”

“X”

Driller
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Automatic Exploitation (Simplified)
typedef struct component {

char name[32];
int (*do_something)(int arg); 

} comp_t; 

comp_t *initialize_component(char *cmp_name) {
int i = 0;
struct component *cmp;

cmp = malloc(sizeof(struct component));
cmp->do_something = sample_func;

while (*cmp_name)
cmp->name[i++] = *cmp_name++;

cmp->name[i] = ‘\0’;
return cmp;

}
x = get_input();
cmp = initialize_component(x);
cmp->do_something(1);

HEAP
char name[32];

int (*do_something)(int arg)

Symbolic Byte[0]
‘\0’

&sample_func

Symbolic Byte[0]
Symbolic Byte[1]
‘\0’

Symbolic Byte[0]
Symbolic Byte[1]
Symbolic Byte[2]
‘\0’

Symbolic Byte[0]
Symbolic Byte[1]
Symbolic Byte[2]
Symbolic Byte[3]
Symbolic Byte[4]
Symbolic Byte[5]
Symbolic Byte[6]
Symbolic Byte[7]
...

Symbolic Byte[32] …
Symbolic Byte[36]

‘\0’

call <symbolic byte[36:32]>



1. Turning the state into an exploited state

2. Constrain buffer to contain our shellcode

Automatic Exploitation (Simplified)

angr

assert state.se.symbolic(state.regs.pc)

angr

buf_addr = find_symbolic_buffer(state, len(shellcode))
mem = state.memory.load(buf_addr, len(shellcode))
state.add_constraints(mem == state.se.bvv(shellcode))



3. Constrain PC to point to the buffer

4. Synthesize!

angr

state.se.add_constraints(state.regs.pc == buf_addr)

angr

exploit = state.posix.dumps(0)

Automatic Exploitation (Simplified)



Vulnerable Symbolic State (PC hijack)

+ Constraints to make PC point to shellcode

Constraints to add shellcode to the address space

Exploit

+

Automatic Exploitation (Simplified)



Exploit Techniques

● Circumstantial
● Shellcode
● ROP
● Arbitrary Read - Point to Flag
● Arbitrary Read/Write - Exploration
● Write-What-Where





Colorguard: Flag Page Leaks
● Make only the flag page symbolic

● Everything else is completely concrete

○ Significantly faster

○ Can execute most basic block with Unicorn

● When cores are idle on the CRS, trace all our test cases

● Solved DEFCON CTF LEGIT_00009 challenge





Patching Backend:
● Detour
● Reassembler
● Reassembler Optimized

Patches:
● Insert code
● Insert data
● …

Patching Techniques:
● Stack randomization
● Return pointer encryption
● ...

Patcherex
Unpatched Binary

Patching Backend

Patched Binary

Patching Techniques

Patches



Detect QEMU

xor eax, eax
inc eax
push eax
push eax
push eax
fld TBYTE PTR [esp]
fsqrt

Adversarial Patches 1/2



Transmit the flag
● To stderr!

Backdoor
● Hash-based challenge-response backdoor
● Not cryptographically secure (can be pre-computed)
● Good enough to defeat automatic systems (online > exec timeout)

Adversarial Patches 2/2



Generic Patches
● Return pointer encryption
● Protect indirect calls/jmps
● Extended Malloc allocations
● Randomly shift the stack (ASLR)
● Clean uninitialized stack space
● ...





CFE Strategies / Techniques

Defense:
● Do not evaluate patches locally, too unreliable
● Do not deploy IDS rules, too dangerous
● Only briefly analyze patches from other teams
● Deploy patches immediately

Offense:
● Pwn as much as possible



CFE Statistics 1/3

● 82 Challenge Sets fielded 
● 2442 Exploits generated
● 1709 Exploits for 14/82 CS with 100% Reliability
● Longest exploit: 3791 lines of C code  
● Shortest exploit: 226 lines of C code
● crackaddr: 517 lines of C code



100% reliable exploits generated for:
● CROMU_000{46,51,55,65,94,98}
● KPRCA_00{065,094,112}
● NRFIN_000{52,59,63}
● YAN01_000{15,16}

Rematch Challenges:
● SQLSlammer (CROMU_00094)
● crackaddr (CROMU_00098)

CFE Statistics 2/3



Vulnerabilities in CS we exploited:
● CWE-20 Improper Input Validation
● CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
● CWE-121: Stack-based Buffer Overflow
● CWE-122: Heap-based Buffer Overflow
● CWE-126: Buffer Over-read
● CWE-131: Incorrect Calculation of Buffer Size
● CWE-190: Integer Overflow or Wraparound
● CWE-193 Off-by-one Error
● CWE-201: Information Exposure Through Sent Data
● CWE-202: Exposure of Sensitive Data Through Data Queries
● CWE-681: Incorrect Conversion between Numeric Types
● CWE-787: Out-of-bounds Write
● CWE-788: Access of Memory Location After End of Buffer

CFE Statistics 3/3



CFE Pwning Statistics

Team Flags Captured (49 rounds | all) CSes Pwned (49 rounds | all)

Shellphish 206 402 6 15

CodeJitsu 59 392 3 9

DeepRed 154 265 3 6

TECHx 66 214 2 4

Disekt 101 210 5 6

ForAllSecure 185 187 10 11

CSDS 20 22 1 2



CFE Patching Statistics

Team Defended CS-Rounds
(49 rounds | all)

CSes Compromised
(49 rounds | all)

Shellphish 29 68 7 12

TechX 27 61 7 14

DeepRed 32 87 6 15

ForAllSecure 54 160 7 16

CodeJitsu 61 104 9 16

Disket 66 127 9 17

CSDS 108 189 9 18



CFE St*p!d Bugs

● Network traffic synchronization

● Race condition in submission logic

● Slow scheduling by Kubernetes



Open source all the code!
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Open Source! BSD license!

https://github.com/mechaphish

https://github.com/shellphish

https://github.com/mechaphish
https://github.com/mechaphish
https://github.com/shellphish
https://github.com/shellphish


On the Shoulders of Giants

AFL
angr

Unicorn 
Engine

Capstone 
EngineVEX







DEFCON CTF 2016:
● CRS assisted with 5 exploits
● Human exploration → CRS exploitation

○ Semantic understanding of interactions/protocols helps
● Backdoors!

Human Augmentation



Thank you!  Stay in touch!

twitter: @shellphish
email: team@shellphish.net or cgc@shellphish.net 
irc: #shellphish on freenode

twitter team: 
@anton00b - @caovc - @giovanni_vigna - @jac_arc - @ltFish_ - 
@machiry_msdic - @nebirhos - @rhelmot - @zardus

Student? Looking for an internship? Master thesis? Wanting to do a PhD?

mailto:team@shellphish.net
mailto:cgc@shellphish.net



