
Hacking phones from 2013 to 2016

Qidan He @flanker_hqd
Liang Chen @chenliang0817

#whoami
• Qidan He
• Apple/Android Exploiter
• Speaker at BlackHat USA/ASIA, DEFCON, RECON, CanSecWest, HITCON,

xKungfo, QCON

• Liang Chen
• Browser exploitation research
• Apple Sandbox/Kernel research

About Tencent Keen Security Lab
• Previously known as KeenTeam
• Won iOS 7 category in Mobile

Pwn2Own 2013
• Won Nexus 6p/iOS 10.1 and got

“Master of Pwn” in Mobile
Pwn2Own 2016

Agenda

• Part 1: iOS hacking

• Part 2: Android hacking

• Demo

Part 1: iOS Hacking

Typical exploit chain

In-sandbox code
execution

Sandbox bypass

Code execution
out of sandbox

Remote entry
(Browser/sms/mms) Code signing bypass

Code execution
out of sandbox

Limited info
leak(cookie)

Kernel privilege
escalation

Sensitive data
leakage Install rogue app

Run code in
kernel land

Jailbreak

Remote attack surface: browser
• Safari as default browser in Apple world
• Special “dynamic signing” entitlement in iOS, make JS optimization

possible

• WebView
• Useful weapon as sandbox bypass approach (e.g CVE-2014-8840 by

Lokihardt)

• Use of WebKit engine
• Major target for Safari vulnerability hunting
• WebCore as HTML rendering engine
• JavaScriptCore as JavaScript engine

WebKit Everywhere

WebKit

A single bug can destroy all

Browsers：
• Safari (Mac OSX, iOS)
• Previous Chrome (Now

Blink)

SNS & IM Mobile Apps:
• Facebook
• Twitter

Apple Apps(Mac OSX &
iOS):
• Mail
• Dashboard

Built-in browsers on some
devices:
• PS4
• Kindle

Reference: https://www.blackhat.com/docs/eu-14/materials/eu-14-Chen-WebKit-Everywhere-Secure-
Or-Not.PDF

• Many successful pwn
cases through WebKit
recently (Kindle
jailbreak, PS4 jailbreak,
iOS APT, etc)

WebKit’s HTML Rendering Engine:
WebCore
• Rich element and complex logic
• Good for vulnerability hunting

• Talked too much in the past
• Black Hat Europe 2014 “WEBKIT EVERYWHERE: SECURE OR NOT?”:

https://www.blackhat.com/docs/eu-14/materials/eu-14-Chen-
WebKit-Everywhere-Secure-Or-Not.PDF

• CanSecWest 2015 “Attacking WebKit Applications by exploiting
memory corruption bugs”: https://cansecwest.com/slides/2015/
Liang_CanSecWest2015.pdf

https://www.blackhat.com/docs/eu-14/materials/eu-14-Chen-WebKit-Everywhere-Secure-Or-Not.PDF
https://www.blackhat.com/docs/eu-14/materials/eu-14-Chen-WebKit-Everywhere-Secure-Or-Not.PDF
https://cansecwest.com/slides/2015/Liang_CanSecWest2015.pdf
https://cansecwest.com/slides/2015/Liang_CanSecWest2015.pdf

Webkit’s JavaScript engine: JavaScriptCore
• JavaScriptCore can support non-JIT

environment
• Most iOS Apps cannot allocate

RWX page

• All components expose attack
surface
• Optimization related

vulnerabilities not best
candidate for exploitation

• Recent research most focused on
Runtime component

Low-level
interpreter

Baseline JIT

DFG JIT

FTL/B3 JIT

Runtime

Typical issues in JavaScript Runtime Component

• Simple issues:
• Interger overflows/heap overflows by coding mistakes
• Rare but still exist

• Redefinition issues:
• Pattern 1: ArrayBuffer neutering problem

• Exists in all modern JS engines
• Pattern 2: Cached something on stack

• Either length or pointer is cached on stack and modified by redefinition function

• Misc issues:
• Need deep understanding of JS engine implementation

CVE-????-????: A simple issue case study
• Discovered by KeenLab in

May 2016

• Internally discovered by
Apple and fixed

• In TypedArray.slice

CVE-????-????: A simple issue case study

Create a new typed array
with sliced length

Call set function to fill in
the newly created typed
array

CVE-????-????: A simple issue case study

Here length field of memmove should be the
sliced length, not original TypedArray’s length

CVE-????-????: A simple issue case study
• POC to trigger

CVE-2014-1513:ArrayBuffer neutering case (Firefox)

• Found by Jüri Aedla and pwned Firefox in
Pwn2Own 2014

• What is ArrayBuffer neutering?

• Neutering logic varies amongst different JS
engine
• E.g Firefox implements by setting ArrayBuffer

byteLength to 0

CVE-2016-4734: Memory Corruption in TypedArray.fill by
Natalie Silvanovich

• JavaScriptCore’s ArrayBuffer
neutering impelmentation
• It sets ArrayBuffer‘s

m_data pointer to NULL
• Bad news: no chance to

exploit in 64bit Safari

CVE-2016-4734: Memory Corruption in
TypedArray.fill by Natalie Silvanovich

o.toPrimitive will be called, call JS
valueOf to convert to primitive value.

Transfer the ArrayBuffer to get it
neutered

CVE-2016-4622: Cached
something(Length)

• Now we know valueOf
redefinition plays happily
with JavaScriptCore
• Can be called during runtime

function execution.
• Can it change something

cached in the stack?

• CVE-2016-4622: by saelo

Shrink the array, but there is cached
length

CVE-2016-4622: Cached
something(Length)

Here length is cached

valueOf is called to
shrink the Array

fastSlice is
called to slice
the array using
OOB-ed range

CVE-2016-1857: Cached something
(Pointer)

• Most redefinition cases tend to
make smaller the length
• How about making it bigger? Yes, the

original buffer could be freed

• CVE-2016-1857: by KeenLab used to
pwn OS X safari in Pwn2Own 2016

CVE-2016-1857: Cached something
(Pointer)

Cache array butterfly on the
stack

Here, toString redefinition
can be called

CVE-2016-1857: Cached something
(Pointer)

By redefining toString method and make the
array bigger, we can free the original butterfly,
filling controllable data, leaving the cached
butterfly pointer to trigger UAF

CVE-????-????: misc issue case study
• Found by KeenLab in Feb, as

Pwn2Own safari exploit
• But fixed by Apple internally

before Pwn2Own ☹

Object.preventExtensions doesn’t take
typedarray as consideration, it arrayifies
the typedarray

CVE-????-????: misc issue case study

Now the
arrayified
typedarray has
arraystorage

CVE-????-????: misc issue case study

By visiting Array.buffer, an ArrayBuffer
will be allocated

CVE-????-????: misc issue case study
• TypedArray indexing type is NonArray, but arrayifying made it

ArrayStorage indexing type
• We allocated an ArrayBuffer, which are publicLength and vectorLength in

Array indexing mode

Type confuse

ArrayBuffer vectorLength publicLength

CVE-????-????: misc issue case study
• We made butterfly capacity bigger than expected, causing OOB

write

iOS sandbox hardening
• Evolve from 2013 to 2016
• Switched to WebKit2 architecture (mobilesafari stays single process

mode longer than OS X safari)
• More restrictive sandbox for WebContent process than before
• More sandbox profile (like sandboxing the AppStore from iOS 9)
• Sandbox profile hardening (e.g avoiding using wildcard to allow too

much stuff)
• Entitlement (IOHID entitlement is needed to open IOHID drivers)

Part 2: Android Hacking

TL;DR: How we pwned newest Nexus6P
with N
• Three bugs forms a complete exploit chain
• One V8 bug to compromise the renderer
• One IPC bug to escape sandbox
• One bug in gapps allows app install

• Google response very quickly
• V8 and IPC bug fixed in midnight of 10.26 (CVE-2016-5197 and

CVE-2016-5198)
• Gapp update pushed in 10.27 (CVE pending)

• Also affects all apps using webview/chromium

History of classical Chrome exploits
• MWR Labs, Pwn2Own 2013

• Type-confusion in webkit
• Arbitrary zero write in IPC::OnContentBlocked

• Pinkie Pie, Mobile Pwn2Own 2013
• Runtime_TypedArrayInitializeFromArrayLike for renderer code execution
• Arbitrary free in ClipboardHostMsg_WriteObjectsAsync

• Geohot in Pwnium 4
• Property redefinition lead to OOB read/write in renderer
• Spoof IPC Message to vulnerable extension in privileged domain

• Lokihart in Pwn2Own 2015
• TOCTOU in GPU process sharedmemory

Case study: CVE-2016-1646
• V8 Array.concat redefinition out-of-bounds in Pwn2Own 2016
• Reported by Wen Xu from KeenLab

Case study: CVE-2016-1646

So renderer code execution got…
• Now what?

The anatomy  
 of Chrome sandbox

• All untrusted code runs in Target process
• Relay most operations to Broker
• Try best to
• lock down the capabilities of renderer

• Even renderer is compromised
• Access is still strictly prohibited

• GPU process have higher level access
• Than normal sandbox process

The new comer: GPU process

Evolution of the Android Sandbox (old time)

Evolution of the Android Sandbox (current
state)

Untrusted_app

Process privileges in Android

Isolated_
app

media

radio

System_server

Kernel
Adb shell

State-of-art defense of Android sandbox
• DAC introduced by nature of Linux
• IsolatedProcess introduced in JellyBean
• SELinux enforced in KitKat
• Further restricted in subsequent release

Chromium Android Sandbox (cont.)
• On Android, Chromium leverages the isolatedProcess feature to

implement its sandbox.

Chromium Android Sandbox(cont.)
• Isolated process was introduced around Android 4.3
• "If set to true, this service will run under a special process

that is isolated from the rest of the system and has no
permissions of its own.”
• Chromium render process

Chromium Android Sandbox(cont.)
• Inherits
• App.te
• Domain.te
• Domain_deprecated.te

Chromium Android Sandbox(cont.)

• Neverallow triggers compile-time errors if disobeyed

Per interface constraint
• Activity, display, webview_update can be accessed, but
• Only interfaces without enforceNotIsolatedCaller can be

invoked

Possible ways for escaping the chrome
sandbox
• Exploiting Chrome IPC (! the old-fashioned way)
• Exploiting basic Binder classes
• Libutils/libcutils
• Serialization

• Exploiting media subsystem (! partial escape)
• Media itself is strictly constrained in Nougat

• Exploiting Kernel

Possible ways for escaping the chrome
sandbox
• Exploiting Chrome IPC (! the old-fashioned way)
• Exploiting basic Binder classes
• Libutils/libcutils
• Serialization

• Exploiting media subsystem (! partial escape)
• Media itself is strictly constrained in Nougat

• Exploiting Kernel

Case study: Pinkie Pie 2013 IPC bug

Case study: Pinkie Pie 2013 IPC bug (cont.)

• The bug is previously fixed but accidentally reintroduced

Case study: Pinkie Pie 2013 IPC bug (cont.)

• The bug is previously fixed but accidentally reintroduced

Possible ways for escaping the chrome
sandbox
• Exploiting Chrome IPC (! the old-fashioned way)
• Exploiting basic Binder classes
• Libutils/libcutils
• Serialization

• Exploiting media subsystem (! partial escape)
• Media itself is strictly constrained in Nougat

• Exploiting Kernel

Exploiting binder object transaction/lib*utils

• CVE-2014-7911
• Lack of serializable validation in ObjectInputStream
• Supply native fields via de-serialization

• CVE-2015-1528
• Lack of transient field in X509Certificate class definition

• CVE-2015-3875
• SharedBuffer integer overflow
• VectorImpl::setCapacity

• Complex objects in bundle are automatically unboxed when
touched

Possible ways for escaping the chrome
sandbox
• Exploiting Chrome IPC (! the old-fashioned way)
• Exploiting basic Binder classes
• Libutils/libcutils
• Serialization

• Exploiting media subsystem (! partial escape only)
• Media itself is strictly constrained in Nougat

• Exploiting Kernel

Media Hardening

Source: android-developers.blogspot.com

• Of course sandboxed process is not allowed
• to directly lookup media services

• But it’s still possible to trigger bugs in media
• Components

• (! Automatically download default not allowed)

Fuzzing the media with AFL+ASAN

Fuzzing the media with AFL+ASAN

Fuzzing the media with AFL+ASAN
• Mediaserver process
• ASAN enabled
• libraries at /data/lib

Exploiting media subsystem
• In M it’s possible to gain mediaserver privilege by embed media

files in Chrome webpage
• Leaking weight/height/metadata to javascript
• Previous work by Mark Brand and Northbit (kudos)
• Android N kills the leak trick by Northbit

• Library load order randomization

• MediaExtractor permission lockdown
• No Internet
• No execmem

Exploiting media subsystem (cont.)
• Any other ideas?
• Hmm, Use-after-free in mediaserver/AudioServer
• CVE-2016-0841 and CVE-2016-6705
• Triggered by large bunch of malformed media files
• (Exploitable in theory)

Exploiting Kernel
• Accessible devices are strictly restricted
• Attacking basic syscalls
• CVE-2015-1805
• CVE-2016-5195 (dirtycow)

• Attacking ion/ashmem devices

Summary and Conclusions
• Sandboxes are a great security mitigation.
• They require usually at least another additional bug to escape

them and compromise the system, especially from the browser
context.
• They have the great advantage of a very concise (and smaller)

attack surface, much more defined to audit.
• A determined and knowledgeable attacker can still compromise

the system, but with more efforts.

