

Hacking Medical Devices

All your vital signs are belong to us ...

- Research: Medical Devices

Blog: •) NSINUATOR.NET Conference: TROOPERS.de

Florian Grunow

- Security Analyst
- ERNW GmbH in Heidelberg
- Team Lead: Pentests

Agenda

- Motivation
- Publications
- The Problem
- Targets
- Findings so far
- Questions

Disclaimer

All products, company names, brand names, trademarks and logos are the property of their respective owners!

Motivation

Make the world a safer place ...

Motivation

- Importance

- We trust these devices
- Doctors trust these devices

- Technology

- Rocket science: e.g. MRI
- Proprietary protocols
- Every device is different

Publications so far ...

What has been done ...

	Id Drug Administrati Promoting <i>Your</i> Health	on	A to Zindex I F Most Popular Sea	ollowFDA FDA \6ice rches	
Home Food Drugs Medical Devi	ces Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics Tobac	
Medical Devices • Home • Medical Devices • Medic	cal Device Safety 💿 Safety Comm	unications			
Medical Device Safety Safety Communications	FDA Safety Communi Hospital Networks	cation: Cybersecuri	ty for Medical I	Devices and	
Information About Heparin Medical Device Safety Archive	Date Issued: June 13, 2013 Audience: Medical device manufacturers, hospitals, medical device user facilities, health care IT and procurements staff, and biomedical engineers				
Tubing and Luer Misconnections: Preventing Dangerous Medical Errors	Issue: Cybersecurity for medical devices and hospital networks Purpose: The FDA is recommending that medical device manufacturers and health care facilities take steps to assure that appropriate safeguards are in place to reduce the risk of failure due to cyberattack, which could be initiated by the introduction of malware into the medical equipment or unauthorized access to configuration settings in medical devices and hospital networks.				
	Summary of Problem and Scope: that can be vulnerable to cybersecu interconnected, via the Internet, hos increased risk of cybersecurity brea	urity breaches. In addition, as mo spital networks, other medical d aches, which could affect how a	edical devices are incre evice, and smartphones medical device operate	asingly s, there is an s.	
	Recently, the FDA has become awa medical devices or hospital network Network-connected/configured r The presence of malware on ho wireless technology to access p Uncontrolled distribution of pass for privileged device access (e.g Failure to provide timely security address related vulnerabilities i	k operations, including: nedical devices infected or disa spital computers, smartphones atient data, monitoring systems swords, disabled passwords, ha u, to administrative, technical, ar software updates and patches	bled by malware; and tablets, targeting n , and implanted patient ard-coded passwords fi id maintenance person to medical devices and	nobile devices using devices; or software intended nel);	

FD			Drug Administrati moting <i>Your</i> Health	on	A to Z Index F Most Popular Sea	-	DA \6ice	o
Home	Food Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobac	
	al Devi Medical De		evice Safety 💿 Safety Comm	unications				

FDA Safety Communication: Cybersecurity for Medical Devices and

Purpose: The FDA is recommending that medical device manufacturers and health care facilities take steps to assure that appropriate safeguards are in place to reduce the risk of failure due to cyberattack, which could be initiated by the introduction of malware into the medical equipment or unauthorized access to configuration settings in medical devices and hospital networks.

Dangerous Medical Errors	to assure that appropriate safeguards are in place to reduce the risk of failure due to cyberattack, which could be initiated by the introduction of malware into the medical equipment or unauthorized access to configuration settings in medical devices and hospital networks.
	Summary of Problem and Scope: Many medical devices contain configurable embedded computer systems that can be vulnerable to cybersecurity breaches. In addition, as medical devices are increasingly interconnected, via the Internet, hospital networks, other medical device, and smartphones, there is an increased risk of cybersecurity breaches, which could affect how a medical device operates.
	Recently, the FDA has become aware of cybersecurity vulnerabilities and incidents that could directly impact medical devices or hospital network operations, including:
	 Network-connected/configured medical devices infected or disabled by malware; The presence of malware on hospital computers, smartphones and tablets, targeting mobile devices using wireless technology to access patient data, monitoring systems, and implanted patient devices; Uncontrolled distribution of passwords, disabled passwords, hard-coded passwords for software intended for privileged device access (e.g., to administrative, technical, and maintenance personnel); Failure to provide timely security software updates and patches to medical devices and networks and to address related vulnerabilities in older medical device models (legacy devices);

McAfee Hacker Says Medtronic Insulin Pumps Vulnerable to Attack

By Jordan Robertson - 2012-02-29T15:00:00Z

Some Medtronic Inc. (MDT) insulin pumps are vulnerable to a hacking attack that could let someone break into the devices from hundreds of feet away, disable security alarms and dump insulin directly into diabetics' bloodstreams, according to a computer-security researcher at McAfee Inc.

Barnaby Jack, who works as a professional hacker for McAfee, said he can remotely control several types of Medtronic pumps. After first discussing the vulnerability last year at a small hacker conference in Florida, he has discovered more ways to exploit the weakness, including overriding security features such as vibration warnings.

Jack, who plans to spotlight the flaw this week at the RSA security conference in San Francisco, is trying to increase awareness of the risks of medical devices. Insulin pumps are pager-sized gadgets that diabetics wear to dispense the lifesaving hormone into the body. Such technology is increasingly relying on wireless communications, making it vulnerable to the same hacking that afflicts personal computers.

"These are computers that are just as exploitable as your PC or Mac, but they're not looked at as often," Jack, 34, said in an interview. "When you actually look at these devices, the security

McAfee Hacker Says Medtronic Insulin Pumps Vulnerable to Attack

By Jordan Robertson - 2012-02-29T15:00:00Z

Some Medtronic Inc. (MDT) insulin numps are vulnerable to a hacking attack that could let

Barnaby Jack, who works as a professional hacker for McAfee, said he can remotely control several types of Medtronic pumps. After first discussing the vulnerability last year at a small hacker conference in Florida, he has discovered more ways to exploit the weakness, including

overriding security features such as vibration warnings.

overriding security features such as vibration warnings.

Jack, who plans to spotlight the flaw this week at the RSA security conference in San Francisco, is trying to increase awareness of the risks of medical devices. Insulin pumps are pager-sized gadgets that diabetics wear to dispense the lifesaving hormone into the body. Such technology is increasingly relying on wireless communications, making it vulnerable to the same hacking that afflicts personal computers.

"These are computers that are just as exploitable as your PC or Mac, but they're not looked at as often," Jack, 34, said in an interview. "When you actually look at these devices, the security

Alert (ICS-ALERT-13-164-01)

Medical Devices Hard-Coded Passwords

Original release date: June 13, 2013

🖨 Print	У Tweet	f Send	Share
---------	---------	--------	-------

SUMMARY

Researchers Billy Rios and Terry McCorkle of Cylance have reported a hard-coded password vulnerability affecting roughly 300 medical devices across approximately 40 vendors. According to their report, the vulnerability could be exploited to potentially change critical settings and/or modify device firmware.

Because of the critical and unique status that medical devices occupy, ICS-CERT has been working in close cooperation with the Food and Drug Administration (FDA) in addressing these issues. ICS-CERT and the FDA have notified the affected vendors of the report and have asked the vendors to confirm the vulnerability and identify specific mitigations. ICS-CERT is issuing this alert to provide early notice of the report and identify baseline mitigations for reducing risks to these and other cybersecurity attacks. ICS-CERT and the FDA will follow up with specific advisories and information as appropriate

The report included vulnerability details for the following vulnerability

Vulnerability Type	Remotely Exploitable	Impact
Hard-coded password	Yes, device dependent	Critical settings/device firmware modification

The affected devices have hard-coded passwords that can be used to permit privileged access to devices such as passwords that would normally be used only by a service technician. In some devices, this access could allow critical settings or the device firmware to be modified.

10/30/2014

SUMMARY

Researchers Billy Rios and Terry McCorkle of Cylance have reported a hard-coded password vulnerability affecting

Researchers Billy Rios and Terry McCorkle of Cylance have reported a hard-coded password vulnerability affecting roughly 300 medical devices across approximately 40 vendors. According to their report, the vulnerability could be exploited to potentially change critical settings and/or modify device firmware.

affected vendors of the report and have asked the vendors to confirm the vulnerability and identify specific mitigations. ICS-CERT is issuing this alert to provide early notice of the report and identify baseline mitigations for reducing risks to these and other cybersecurity attacks. ICS-CERT and the FDA will follow up with specific advisories and information as appropriate

The report included vulnerability details for the following vulnerability

Vulnerability Type	Remotely Exploitable	Impact
Hard-coded password	Yes, device dependent	Critical settings/device firmware modification

The affected devices have hard-coded passwords that can be used to permit privileged access to devices such as passwords that would normally be used only by a service technician. In some devices, this access could allow critical settings or the device firmware to be modified.

Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses

Daniel Halperin[†] University of Washington

Thomas S. Heydt-Benjamin[†] University of Massachusetts Amherst

Benessa Defend University of Massachusetts Amherst University of Massachusetts Amherst

Will Morgan University of Massachusetts Amherst

Benjamin Ransford[†]

University of Massachusetts Amherst

Kevin Fu. PhD* University of Massachusetts Amherst

Shane S. Clark

Tadayoshi Kohno, PhD* University of Washington

William H. Maisel, MD, MPH* BIDMC and Harvard Medical School

Abstract-Our study analyzes the security and privacy properties of an implantable cardioverter defibrillator (ICD). Introduced to the U.S. market in 2003, this model of ICD includes pacemaker technology and is designed to communicate wirelessly with a nearby external programmer in the 175 kHz frequency range. After partially reverse-engineering the ICD's communications protocol with an oscilloscope and a software radio, we implemented several software radio-based attacks that could compromise patient safety and patient privacy. Motivated by our desire to improve patient safety, and mindful of conventional trade-offs between security and power consumption for resourceconstrained devices, we introduce three new zero-power defenses based on RF power harvesting. Two of these defenses are humancentric, bringing patients into the loop with respect to the security and privacy of their implantable medical devices (IMDs). Our contributions provide a scientific baseling for understanding the this event to a health care practitioner who uses a commercial device programmer1 with wireless capabilities to extract data from the ICD or modify its settings without surgery. Between 1990 and 2002, over 2.6 million pacemakers and ICDs were implanted in patients in the United States [19]; clinical trials have shown that these devices significantly improve survival rates in certain populations [18]. Other research has discussed potential security and privacy risks of IMDs [1], [10], but we are unaware of any rigorous public investigation into the observable characteristics of a real commercial device. Without such a study, it is impossible for the research community to assess or address the security and privacy properties of past, current, and future devices. We address that gap in this paper

Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses

Daniel Halperin[†] University of Washington

Thomas S. Heydt-Benjamin[†] University of Massachusetts Amherst

Benjamin Ransford[†] University of Massachusetts Amherst

Shane S. Clark University of Massachusetts Amherst

Benessa Defend University of Massachusetts Amherst

Will Morgan University of Massachusetts Amherst

Abstract-Our study analyzes the security and privacy prop-Univ chool erties of an implantable cardioverter defibrillator (ICD). Introduced to the U.S. market in 2003, this model of ICD includes Abstracemaker technology and is designed to communicate wirelessly erties owith a nearby external programmer in the 175 kHz frequency pacemorange. After partially reverse-engineering the ICD's communiwith a range cations protocol with an oscilloscope and a software radio, we cations implemented several software radio-based attacks that could compro-our descompromise patient safety and patient privacy. Motivated by aware or any rigorous public investigation into the ob-

trade-offs between security and power consumption for resourceconstrained devices, we introduce three new zero-power defenses based on RF power harvesting. Two of these defenses are humancentric, bringing patients into the loop with respect to the security and privacy of their implantable medical devices (IMDs). Our contributions provide a scientific baseline for understanding the nmercial ract data Between Ds were cal trials survival liscussed but we

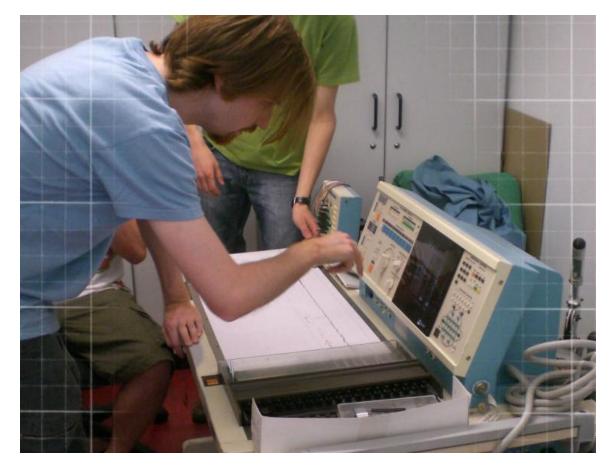
servable characteristics of a real commercial device. Without such a study, it is impossible for the research community to assess or address the security and privacy properties of past, current, and future devices. We address that gap in this paper

http://arstechnica.com/tech-policy/2014/10/feds-examining-medical-devices-for-fatal-cybersecurity-flaws/

"The Department of Homeland Security's (DHS) Industrial Control Systems-Cyber Emergency Response Team (ICS-CERT) works directly with the Food and Drug Administration (FDA) and medical devices manufacturers, health care professionals, and facilities to investigate and address cyber vulnerabilities. DHS actively collaborates with public and private sector partners every day to identify and reduce adverse impacts on the nation's critical cyber systems," DHS spokesman S.Y. Lee wrote Thursday to Ars.

The Problem

Anamnesis ...



Siemens Sirecust BS1

In the old days ...

Nihon Kohden Neurofax EEG

In the old days ...

The Change

- Optimization of processes
 - Good or bad?
- New com options available
 - Lowering costs
- Especially on Intensive Care Units (ICUs)
- Interoperability
 - E-Health records
 - PACS
 - Personal Health

The Gathering

Standard anesthesia devices

Are we Ready?

- What about IT in hospitals?

- Resources / Know-how
- Different types of networks
 - Doctors
 - Patients
 - Devices
 - Guests
 - Research
- "Semi-New" technologies on the rise -> No experience
- Remote maintenance (non-optional?)

Are we Ready?

- What about home monitoring?

- Devices for personal health
- Transmitting wireless / Upload to provider
- Need to be integrated without hassle
 - What could possibly go wrong?
 - Think pre-calculated encryption keys in home routers
- Must not be expensive
- Privacy?

The Scale

Home Monitoring

POST /cgi-bin/maint HTTP/1.1 User-Agent: vendor UserAgent Host: scalews.vendor.net Accept: */* Content-Length: 12901 Content-Type: application/x-www-form-urlencoded Expect: 100-continue

Privacy?

$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
095744600000000000000000000000000000000000
665e84a4600000000000000000000000000000000000
f46000000000000000000000000000000000000
21543000000000000000000000000000000000000
fff0000000e687580002000900460048002a00000000000000000000000000000000
000000000000000000000000000000000000
7abbe433557147f7b00000000000000000000000000000000000
000000000000000000000000000000000000000
00000000000000000000000000000000000000
49842000000000000000000000000000016f2f0046524100bbd3475301000400cdcccc3f0000f04133336142000000000000000000000000000000000000
000000000000000000000000000000000000
d4953000000004a1249530000000010000000100000000000000000000
37466750000000000000000000000000000000000
01b00040000000022001800fe2000004d1d0000000000002f0000002300000000000000000
00000000000000000000000000000000000000
2475329f8475332ff47533a064853420d485349144853521b48535a224853612948536a304853713748537a3e4853814548538a4c4853915348539a5a4853a1614853a
a684853b16f4853ba764853c17d4853ca844853d18b4853da924853e1994853eaa04853f1a74853faae485301b6485309bd485312c4485319cb485322d2485329d9485
332e0485339e7485342ee485349f5485352fc485359034953620a4953ad0e4953000000000000000000000000000000000000
0000000000000000000000000005a02540262023d0255024f024602590263026202550255026b026b02720273025e0266026f0257024102570252025a023d02450256024f0
24002580243023c025302610278027702aa02ac02d1026403690300000000000000000000000000000000
00000000000000000000000000000000000000
0dc00db00db00db00db00db00dc00df00f900ee0000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000290000025000000500000050000000000000

providing security

User-Agent: vendor UserAgent Host: scalews.vendor.net Accept: */* Content-Length: 12901 Content-Type: application/x-www-form-urlencoded Expect: 100-continue

0000000000000000021004e00577e010000004842000

10020efad0500f8ffff1f03000000a04100e02b46260

000000000000000000000000000d35ea345f7 0000000000000000ec3f95455c7a164693d55f46000 000014004c000e234842f2b5c742a0e215430 000016434c35154400000000f

0fe4213

POST /cgi-bin/maint HTTP/1.1

action=store&sessionid=9844-b22fe84d-95598ae9&source=1&type=1&data=0b000400134008000100120030303a32343a65343a31373a35363a306100030011006265 33432346334653736303430303000020020007363616c6577732e77697468696e67732e6e65743a38302f6367692d62696e004c000400710300000d0004010 e0ad7233eae47e13d 20a3e00 00009f41ea39247hb239520 3fd03fd03fd03fd0

000001ff1f0c6aff1f85780500301800201

008300cdcccc3

a1249530000000000100

000080bd4510004c0001000000050000002d00000150000008520000016

omfgstfu

006f6d666773746675000

Privacy?

HTTP!

00000000086f2475329f8475332ff47533a064853420d485349144853521b48535a224853612948536a304853713748537 24853814548538a4c4853915348539a5a4853a1614853aa684853b16f4853ba764853c17d4853ca844853d18b4853da924853e1994853eaa04853f1a748 309bd485312c4485319cb485322d2485329d9485332e0485339e7485342ee485349f5485352fc485359034953620a4953ad0e495300000 00000005a02540262023d0255024f024602590263026202550255026b026b0272027 000000000e100e100e000e000e000df00e900e600e500e400e400e300e300e300e200e200e200e100e100e100e100e 10/30/2014

Are they Ready?

- What about the vendors?

- Same mistakes again?
- Learning curve
 - WiFi
 - Car keys
 - Exploiting like in the old days?
- "We are not really using this port, the board came with it!"
- "We are fine, we have two network interfaces (trusted/untrusted)!"

What is Important for Compliance?

- Focus is on safety not security

- Especially important in Germany
- We do not even have these words ...
- Safety mostly works
 - Still have bugs like: "Device showing asystole alarm when patient is fine"
- Does security?
 - "We only need to make sure that there are proper authorization mechanisms ..."
 - "A hacker will always find a way ..."
 - "510(k) assumes there is no hostile environment, doctor will not harm patient, patient will not harm himself or doctor"
- Certification
 - Focus on safety, too

Problem Summary

- Little resources on customer's side
- Little experience with incidents on vendor/hospital side
- Safety vs. Security

\rightarrow This could kill you!

Targets

What are we looking at?

Targets

- Medical devices with enabled com

- Com is in places you would never suspect

- "Severity Rating":

- Low: Monitoring stuff
- Medium: Diagnostic systems
- High: Feedback to patient

Monitoring

Diagnostic

Feedback

Targets

- Hard to get hands on devices
- Vendors have little interest?
 - Lack of experience?
- Expensive
- Cooperations
 - What about liability?

\rightarrow Hard to test!

Targets

What we looked at so far ...

Target Example: EEG

- Measures "brain waves"
- Used in small/medium sized medical offices
- Grey box and software on a host
- Communication via LAN
 - Can be deployed in different rooms
- Grey box <- UDP -> Host
- No auth, no encryption, no security
- Full remote control of the box

Target example: EEG

Box for electrodes

Off-Topic for a Second ...

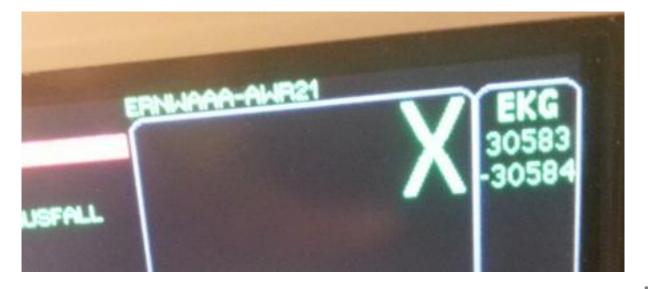
- OpenEEG project
- Build your own EEG
- Do crazy Biofeedback stuff
- Brain-to-computer interface

DIY: EEG

OpenEEG Project

Disclaimer

There will be no details yet on how the exploits work as this might pose a threat to life or the physical condition of patients!



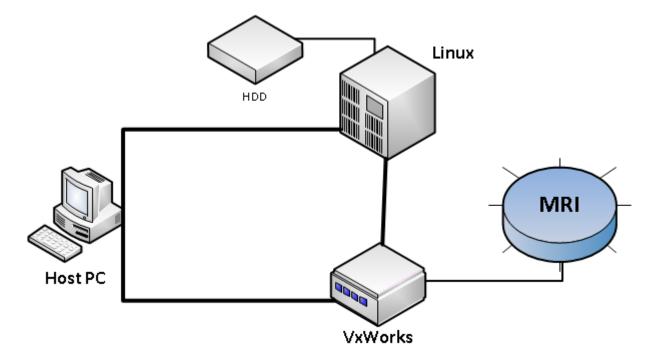
- Widely used in hospitals
 - ICU
 - During operation

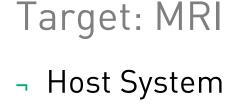
- Monitors critical vital signs

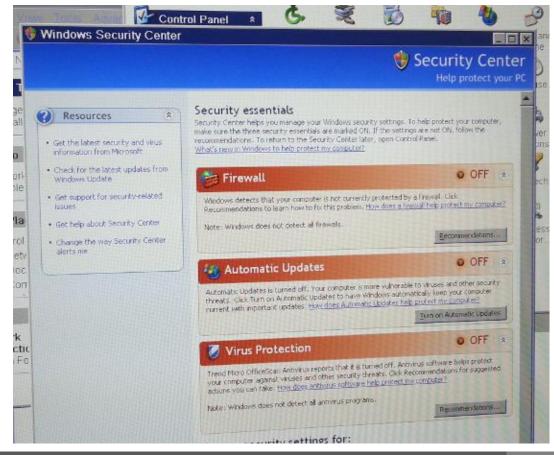
- SP02
- Blood Pressure
- ECG
- Temperature
- Respiration
- More ...

Unreasonable Configuration

¬ Really cool! ☺




- Consists of:


- Host System
 - Windows based PC
- Image Processing System
 - Retrieves the raw data and constructs images
- Control System
 - Controls hardware of the MRI (basically patient table, coils, etc.)

10/31/2014

- Host System
- Open Ports: 114

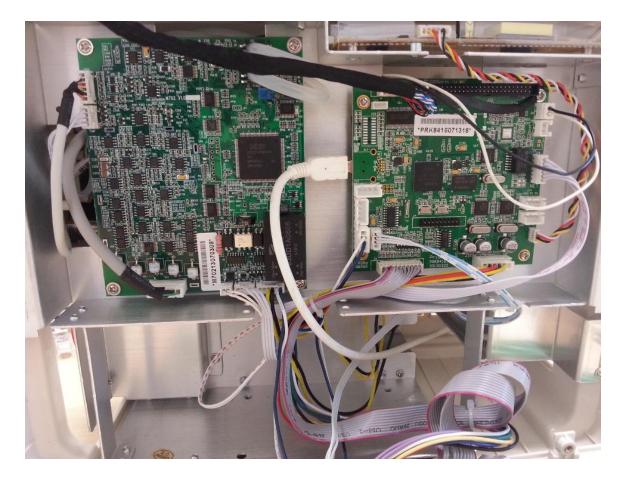
Host is up	0.005	59s latency). 🤍	4	🖉 FW: Neue
Scanned at	2014-0	04-04 15:04:16 CE	ST f	or 167s
Not shown:	65410	filtered ports		Re: Hotel
PORT 👘 ta	STATE	SERVICE		Penetrati
80/tcp 🔤 🗆	open	http 🔬 🥥		Penetrati
104/tcp	open	acr-nema		Your Emi
135/tcp	open	msrpc		Fwd: Re:
443/tcpras	open	https		WG: WG:
1084/tcp	open	ansoft-lm-2		Laptops
1087/tcp	open	cplscrambler-in		test
1088/tcp	open	cplscrambler-al		Security /
1121/tcp	open	rmpp		Rafael / A
1122/tcp	open	availant-mgr		_
1149/tcp	open	bvtsonar		Re: sagt r
1150/tcp	open	blaze		Re: Penet
1190/tcp	open	commlinx-avl 🥄		Excel
1202/tcp	open	unknown		AUTO: Ste
1203/tcp	open	unknown		Bist du he
1218/tcp	open	aeroflight-ads		🖉 FW: Requ
1219/tcp	open	unknown		🖉 Нарру
1233/tcp	open	univ-appserver 🥥		SAP CUse
1234/tcp	open	hotline		Fwd: Adv
1243/tcp	open	serialgateway 🥏		🖉 Re: Meet
1319/tcp	open	amx-icsp 🧼 🥚		Meeting I
1320/tcp	open	unknown		Kuchen
1334/tcp	open	writesrv		Re: Upda
1335/tcp	open	unknown		Re: Fwd:
1347/tcp	open	bbn-mmc		

Target: MRI - Host System - After portscan

		"24 OT 2
<matching_file <="" name="3 fond</td><td></td><td>4</td></tr><tr><td>MATCHING_FILE NAME= IF INE</td><td></td><td>4</td></tr><tr><td>«MATCHING FILE NAME=" td=""><td></td><td>2</td></matching_file>		2
		4
	AppVer: 24.91.3.2 ModName: mmmmm III	0
CMATCHING_FILE NAME="3 = ModVer 3921 Difset 0005460		1
<matching_file name="</td"><td></td><td></td></matching_file>		

Target: Syringe Pump

Demo: Infusion Override

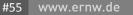


- 2 central elements

- ARM for peripherals and probably signal processing
 - Control the pump for blood pressure
 - Maybe FFT
- ARM for user interaction
 - RX / TX to the peripheral board
 - ARM926EJ-S @ 400MHz
 - 64MB RAM

Signal Processing / Frontend

Demo: Pwning vital signs



Targets

- There is more to come!

- Cooperations with hospitals
- Information Gathering reveals promising results
 - Radiology Equipment:
 - MRIs
 - X-Rays
 - Hospital Infrastructure
 - Physical Access Control Systems
 - Aneasthesia devices


Final Words ...

- We need to test these devices!
- Responsible disclosure process is critical!
- Get your hands dirty! 🙂
- There will be more publications from ERNW!

→ Stay tuned!

Questions?

Thank you!

Please consult your doctor or pharmacist for risks and side effects of this presentation ...

