
Identifying Memory Corruption Bugs with
Compiler Instrumentations

이병영 (조지아공과대학교)
blee@gatech.edu

@POC2014

mailto:blee@gatech.edu
mailto:blee@gatech.edu

How to find bugs

● Source code auditing

● Fuzzing

Source Code Auditing

● Focusing on specific vulnerability patterns
○ integer overflow:)

● Focusing on newly introduced code bases
○ Keep track of commit logs

● Deeply understand complicated logics
○ Complex ⇒ More mistakes!

Fuzzing

● Why Fuzzing?
○ Simple. Just need to know the input format.
○ Understanding code logics in major OSS is too difficult.
○ Many modern (C++) bugs are too complicated.

■ Use-after-free
■ Bad-casting

Lessons from Futex

● Linux kernel futex local privilege escalation
 (CVE-2014-3153)

○ Found by Pinkie Pie
○ Android TowelRoot by GeoHot

Don’t know whether Pinkie Pie found this bug by
fuzzing, but Trinity already triggered the issue.

Old days: Fuzzing with Debuggers

● A debugger’s role in fuzzing
○ Catch the (crashing) exception, and report!

● Number of debuggers
○ WinDbg, GDB, PyDbg, ...

● What was the problem?
○ a crash != a security bug, but too many crashes!

Crashes != Security Bugs
● How the bug manifests itself in debuggers?

○ Stack overflow, Integer overflow, Heap overflow, double-
free

○ Use-after-free, Use-after-return, Uninitialized Memory
Read, Bad-Casting

○ …

 ⇒ Memory Access Violation (Windows)
 or Segmentation Fault (Linux)

Still old days: !exploitable

● A Windows debugging extension
○ For automated crash analysis and security risk

assessment.

● Full of heuristic analyses
○ Whether return addresses or heap meta-data are

controllable.

New direction: Compiler Instrumentations

● Collect execution contexts at runtime

● Monitor whether the program violates any of
guarantees/assumptions

Tools and Coverage

Address Sanitizer Stack/Heap overflows, Double-free, Use-after-free

Memory Sanitizer Uninitialized Memory Read

Thread Sanitizer Data races

UndefinedBehavior Sanitizer Most of undefined behaviors (Signed overflows, Bad-castings, etc)

Dangle Nullifier Use-after-free

{Address|Memory|UndefinedBehavior} Sanitizer

● Available from LLVM or GCC
○ e.g., -fsanitize=address for Address Sanitizer

● Heavy users
○ Fuzzing framework for major browser vendors

■ Chromium, Firefox, …
○ Debugging/Fuzzing for server side implementations

■ Google search engines, Youtube back-ends
○ Individual fuzzer developers

Address Sanitizer

● Shadow Memory
○ Maintain truly addressable regions
○ Hooking all memory allocation functions

■ Stack variable allocations
■ Global variable allocations
■ Heap allocations

● (e.g., malloc()/free(), new/delete operator, etc)
○ Map real 8 bytes into 1 shadow byte

Address Sanitizer

Object A

Object B

Object C

Object A

Object B

Object C

Shadow memory knows
only green blocks are
addressable.

Address Sanitizer

● All the memory read/write instructions are
instrumented.
○ Always check with shadow memory if it is

addressable.

Address Sanitizer

● Stack / Heap overflows
○ Immediately identifying the bug

once it hits the red-zone.

Object A

Object B

Object C

OK !
OK !

ERROR !

Address Sanitizer:
Use-after-free

Div *pDiv = new Div;
Html *pHtml = new Html;
pDiv->parent = pHtml;

…

delete pHtml; // free

…

pDiv->parent->... // Use-after-free !

Html

pHtmlpDiv->parent

Html (freed)

Address Sanitizer:
Use-after-free in Practice

Div *pDiv = new Div;
Html *pHtml = new Html;
pDiv->parent = pHtml;

…

delete pHtml; // free

new Href; // x1000

pDiv->parent->... // Looks Valid !

Html

pHtmlpDiv->parent

Html (freed)Href

This is why use-after-free is difficult
to detect with typical debuggers!

Address Sanitizer:
How to handle use-after-free

● Quarantine zone
○ Do not re-use freed memory blocks if possible
○ Default size : 256MB

Address Sanitizer:
How to handle use-after-free

Div *pDiv = new Div;
Html *pHtml = new Html;
pDiv->parent = pHtml;

…

delete pHtml; // free

new Href; // say 1000 times!

pDiv->parent->... // Hitting red-zone!

Html

pHtmlpDiv->parent

Html (freed)

Href

Address Sanitizer

DEMO

Bad-casting (or Type Confusions)
● Downcasting

○ Casting a reference/pointer to one of its derived classes.

● Bad-casting
○ A destination object is an incomplete object of the target

type
○ c.f., std::bad_cast

Bad-casting: simple examples
class S {
public:
 virtual ~S() {}
 int m_s;
 ...
};

class T: public S {
public:
 virtual ~T() {}
 int m_t;
 ...
};

S *ps = new S();
T *pt = static_cast<T*>(ps); // Bad-casting !

Bad-casting and Security

vtable ptr (for S)

int S::m_s

vtable ptr (for S)

int S::m_s

int T::m_t

S T

visibility of S *ps
visibility of T *pt

Memory region for T::m_t can be corrupted
using T* pt as it was never allocated.

Bad-casting and Exploitability
● Overwrite meta-data in the class

○ virtual function table pointers
■ Multiple vtable ptrs in the class
■ Forge the vtable and then jump

○ Length variables
■ Vector length variables
■ Info-leak or trigger additional heap overflows

● Overwrite other objects’ meta-data

Bad-casting and Exploitability
● CVE-2013-0912

○ Bad-casting from HTMLUnknownElement to SVGElement
○ Used to exploit Chrome’s renderer process in Pwn2Own 2013

ScriptWrappable

Node

ContainerNode

Element

HTMLElement

HTMLUnknownElement

SVGElement

sizeof(HTMLUnknownElement) ⇒ 96
sizeof(SVGElement) ⇒ 168

Extra (168-96) bytes were writable via bad-casting

Bad-casting and Exploitability

SVGElement* SVGViewSpec::viewTarget() const {
 if (!m_contextElement)
 return 0;

 return static_cast<SVGElement*>(
 m_contextElement->treeScope()->getElementById(m_viewTargetString));
}

What’s the runtime type
where the expression points to?

How to avoid bad-casting
● Naive guideline to avoid bad-casting

○ static_cast for upcasting
○ always dynamic_cast otherwise

● Issues
○ dynamic_cast is slow
○ dynamic_cast is not allowed in many large scale software

■ -fno-rtti

How to catch bad-casting
● Identity predicates (in Blink)

○ Implement identity virtual functions for each type
○ assert() with the predicate
○ Effective, but difficult to scale

● dynamic_cast in debug builds (in ProtoBuf)
○ assert(p==NULL||dynamic_cast<T>(p)!=NULL)
○ Slow, and RTTI is required.

UndefinedBehavior Sanitizer (UBSan)

● UBSan catches various undefined behaviors
○ Signed integer overflow, out of array bound accesses, etc
○ Implemented in Clang/Compiler-rt

● UBSan vptr: -fsanitize=vptr
○ Detect any use of an object where vptr indicates the wrong

dynamic type

How UBSan vptr works:
Utilize C++ABI and RTTI

vtable ptr (for S)

int S::m_s

int T::m_t

S

T

Offset to top

&std::type_info (for S)

&S::~S()

Offset to top (to S)

vtable ptr (for S)

int S::m_s

&std::type_info (for T)

&T::~T()

a type name (S),
class hierarchy of S, etc

a type name (T),
class hierarchy of T, etc

vtable for S

vtable for T

How UBSan vptr works
● At compile time (Clang)

○ For any operations on polymorphic class types,
invoke a sanity check function, type_check()

● (Simplified) Instrumentation example

static_cast<T*>(ps); type_check(typeinfo of T*, ps);
static_cast<T*>(ps);

How UBSan vptr works

● At runtime (Compiler-rt)
○ Parse RTTI information given a base pointer of an object
○ Check whether the operation is valid

How UBSan vptr works
● Caching to speed up

○ Store the checked results
■ Hash(type_name || vtable ptr)

○ Hash collisions?!
 ⇒ Minimize impacts with ASLR (especially for 64-bit targets!)

● Instrumentation example

static_cast<T*>(ps);

if Hash(“T” || vtable ptr of the object where ps points to) does not exist:
 type_check(typeinfo of T*, ps);
static_cast<T*>(ps);

UndefinedBehavior Sanitizer

DEMO

Limitations of Address Sanitizer

● Address Sanitizer may miss use-after-free
● Abusing quarantine zone

○ Keep allocating buffers to force the re-allocation.
● Cannot detect the bug if it accesses beyond

red-zones.

function onOpened() {
 buf = ms.addSourceBuffer(...);
 // disconnect the target obj
 vid.parentNode.removeChild(vid);
 vid = null;
 // free the target obj
 gc();
 var drainBuffer = new Uint32Array(1024*1024*512);
 drainBuffer = null;
 // drain the quarantine zone
 gc();

 for (var i = 0; i < 500; i ++) {
 // allocate/fill up the landing zone
 var landBuffer = new Uint32Array(44);
 for (var j = 0; j < 44; j ++)
 landBuffer[j] = 0x1234;
 }
 // trigger use-after-free
 buf.timestampOffset = 100000;
}

ms = new WebKitMediaSource();
ms.addEventListener('webkitsourceopen', onOpened);
vid = document.getElementById('vid');
vid.src = window.URL.createObjectURL(ms);

Simplified
Chrome exploits (CVE-
2012-5137)

Force to re-allocate
freed buffers. Just like
heap-spraying!

Limitations of UBSan vptr

● Difficult to deploy
○ RTTI ⇒ Requires Blacklisting

● Cannot handle non-polymorphic class types.

Conclusions

● Compiler instrumentations tools are useful!
○ It is very easy to use

● Extremely useful for fuzzing
○ Easy bug identification!

감사합니다!

