
(More)Advanced defense for IE

Bo Qu, Royce Lu & Ga1ois

Agenda

 whoami

 history|less

 ls ~/InternetExploder/js

 ls ~/InternetExploder/flash

 ls ~/InternetExploder/luchong

 ./exp

 man -h

About us

 IPS team of Palo Alto Networks(09:00-17:00)

 Researchers(19:00-22:00)

 http://osvdb.org/affiliations/1148-palo-alto-networks

 White hats

 100+ CVEs from vendors

 0 bug sold to ZDI/3rd party

 Exploit writer for defense in depth

History

 June patch

 Isolated heap

 Not a problem

 July patch

 Deferred free

 Not a silver bullet

History

 UAF is NOT everything

 Type confusion

 Overflow

 Uninitialized memory

 Other memory corruption…

 Defense on the heap, or deeper?

Project JS

 Exploit trends in IE browser

 UAF and OBA(Out of Boundary Access)

 Write primitive

 Write what?

 BSTR

 *Array*

 Element Attribute

 Other

Project JS

 Why Array?

 Simple: Few JS code

 Powerful: From write one byte to read/write anywhere

 Extensive: UAF and OBA, heap spray and heap layout,

javascript and vbscript

Project JS

 Defense array heap spray and heap layout

 Hook array allocate function

 Loop Counts and array length

Project JS

 Defense array write primitive

 Core idea: Precise “address + length/buffer”

modification checking

 Three types

 Different allocate functions

 Different get/set/length functions

 Code overlapping problem of inline hook

 Different functions between JIT and not

Project JS

 Defense array write primitive

 Typed Array

 Native Int Array with head and data together[not sparse]

 Native Int Array with head and data alone[not sparse]

Project JS

 Limitations

 Check most UAF/OBA exploit

 except the one not using BSTR/Array/EA

 except the one like cve-2013-2551

 “BSTR, Element Attribute” to be continued…

Project Flash

 Why flash?

 It is popular

 It provides more than it should have

 It used to be a blind point

Project Flash

 [Heap] Spray

 Regular heap spray

 Small chunk spray

Project Flash

 [Heap] Spray

 Two-layer defense

 Object allocation monitor

 Memory usage monitor

 Reduce false positives

Project Flash

 Vector

 The root of all evils

 Modification of length

 Modification of buffer address

 Full memory access is *bad*

Project Flash

 Vector

 Write 0? 1-(58.3%)n chance to exploit.

0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c 0x20 0x24

VT 0x4e ? ? ? 0x00 PTR 0x00 0x00 0x00

0x00 …

Len …

Project Flash

 Vector

 Hooking read/write functions(6 places?)

 Length checking

 Single object checking

 Multiple objects checking

 Buffer checking

 Mapping table

 Buffer validation

Project Luchong

 Project Luchong(路冲)

 The bad Fengshui

 Destroy predictable heap layout

 Transparent to user level

Project Luchong

 Why Luchong

 Heap Fengshui is vital for exploitation

 Heap is predictable

 Continuous, linear increasing.

 Alignment.

 Other features for performance

Project Luchong

 Mechanism

 Understand the accurate spay

 Higher 20 bits

 Guaranteed by repeatedly allocation

 Optimized by linear increasing mechanism
 Lower 12 bits

 Guaranteed by alignment

Project Luchong

0C0C0C0C

Project Luchong

 Mechanism(cont.)

 Break linear increasing mechanism

 Large sized chunk

 Small sized chunk

 Light-weight solution

target

Project Luchong

 Mechanism(cont.)

 Break the alignment

 Large sized chunk (0x1000 alignment)

 Small sized chunk (0x08 alignment)

 Allocate more bytes than it requests

Project Luchong

 Mechanism(cont.)

 Understand the exploits

 Buggy object and exploit object are different ones.

 Exploit object must be placed in certain position

 UAF, same position

 OBA, next to buggy object

 Others
 Size matters

Project Luchong

VT

data data data data data

data data

call [exx+xx] ->xchg eax,esp

data

inc [exx+xx]

Project Luchong

 Mechanism(cont.)

 Break the heap fengshui

 Focus on small chunk(<0x200 bytes)

 Create more heaps

 Randomize the memory layout

 Randomize the actual size

Project Luchong

1, misaligned
2, inaccurate data control
3, failed exploitation

Project Luchong

 Everything else

 Cookie for the heap chunk

 Post exploitation checking

 Chunk initialization

 Deal with uninitialized cases

 Timestamp for the free’d chunk

 Enhanced deferred free

Project Luchong

 Limitation despite of 99% coverage

 Trade off between performance and accuracy

 Stack things

 CVE-2014-2797, type confusion on the stack

 Brute force

 Logic bugs

Demo

 Demo

Q&A

