An Amazing Journey into the
depth of my Hard Drive

About myself

Master Thesis on security
of Amazon EC2 machines

PhD Candidate on the topic

of Embedded Firmwares’
Security at EURECOM [1]

My website [2](Publications, etc)
Email: zaddach@eurecom.fr

S o p h

a A n t i

p o I i

Acknowledgements

Thanks to my Advisor Davide Balzarotti and “Co-
Advisor” Aurélien Francillon for enabling me to
do this research!

Thanks to Travis Goodspeed for getting me
started

Similar hacking has been done by sprite_tm on a
different HDD brand [3]

A description of a sophisticated data exfiltration
backdoor based on compromised HDDs [5]

What is a hard drive? — Physical view

A bunch of magnetized disks that store binary
information

The heads move over those disks

A DSP or custom chip decodes the
analog signal

A microprocessor handles
communication with the PC
and keeps components in sync

What is a hard drive? — Logical view

* Bytes are grouped into blocks (typically 512
bytes), which are addressed by a block

number (LBA)

* The computer can (among other) read and
write blocks

e Lots of care is taken that written blocks do not
change (error correction, etc)

Breaking in

There is a JTAG port, but it seems to be disabled :(
Seagate drives have a diagnostic serial port

accessible on the Master/S

ave jumpers

This feature is known and documented in

professional circles (e.g., H

DD recovery specialists

[4])

A text menu gives access to diagnostic functions

This feature is not specific to Seagate (also found
a similar menu in WD and Samsung disks)

Type CTRL+Z on the serial console ...

Diagnostic Firmware Menu

Online CR: Rev 0011.0000,

Oonline ESC: Rev 0011.0000,
or Batch File

Oonline " ': Rev 0001.0000,

Oonline '.': Rev 0011.0000,

Online '?': Rev 0011.0000,
Buffer Information

online ' ': Rev 0012.0001,
Statistics

online '$': Rev 0012.0002,

Statistics By Zone

Oonline '{': Rev 0011.0000,
R/W Tracing

Flash,
Flash,

Flash,
Flash,
Flash,

Flash,
Flash,

Flash,

Abort
Abort Looping Command

Pause Output
Display Active Status
Display Diagnostic

Display Read/write
Display Read/write

Toggle EIB-Specific

Diagnostic Firmware Menu (2)

Oonline Az: Rev 0011.0000, Flash, Enable ASCII Diagnostic
Serial Port Mode

All Levels '+': Rev 0012.0000, Flash, Peek Memory Byte,
+[AddrH1], [AddrLo], [NotUsed], [NumBytes]

All Levels '-': Rev 0012.0000, Flash, Peek Memory word,
-[AddrHi1], [AddrLo], [NotUsed], [NumBytes]
All Levels '=': Rev 0011.0002, Flash, Poke Memory Byte,

=[AddrHi1], [AddrLo], [Data], [Opts]
Online AC: Rev 0011.0000, Flash, Firmware Reset

Dumping the firmware

Hmmm, we got peek and poke, that’s cool

With a bit of trial and error, the firmware can
be extracted (drive will crash if you use invalid

address)

Neighborly thanks to Travis Goodspeed who
dumped the firmware

But it gets even more interesting ... when you
reboot the drive

Bootloader Prompt

ASCII Diag mode

F3 T>
Spinning Down

Spin Down Complete
Elapsed Time 6.012 secs
Delaying 5000 msec

Jumping to Power On Reset@

SEA-3 Yeti Boot ROM 2.0
(12/06/2007)

Copyright Seagate 2007

Boot Cmds:

DS

AP <addr>
WT <data>

RD

GO

TE

BR <divisor>
BT

ww

RET

Inject a debugger

Now we have poke (AP + WT) and execute (AP
+ GO)!

This allows us to load and execute code on the
drive’s ARM processor

The addresses of the getc and putc functions
are known from the firmware disassembly

| developed a tiny GDB stub (2.6k) that
communicates with my host over UART and
allows me to debug code on the drive

Accelerating the stub loading

uvLusIctTu - nvo
checksum = RS
LDR R4, =Hardware_UART
LSLS checksum, RO, #0x10
LDR RO, [R4,#0x14]
LSRS checksum, checksum, #0x10
LSLS RO, RO, #O0x1F
BEQ maybe_ UART_error
— — Y
Ll B3
LDR RO, [R4]
CMP RO, #0x55 ; 'U°’
BNE maybe_UART_error
Y
o B3
ADR RO, aEncounteredAbo ; "\n\rEncountered abort, checking for secon"...
BL puts ; puts(msg = '\n\rEncountered abort, checking for second occurrence' [0x10094c]) %
Ll B3
loc_10083A
LDR RO, [R4, #0x14)
MOVS notused, R4
LSLS RO, RO, #0x19
BPL loc_10083A
————————;:ﬂ_:]
Ll B3
MOVS R4, #0
MOVS R7, Ox258

Reconaissance

* Get ARM Coprocessor registers - CPUID,

Memory protection settings, cache settings,
etc.

* Drive still crashes when an invalid address is
accessed =2 Reconstruct the memory map

 Some regions are already known from the
memory dump in the diagnostic menu

* |0 region is known from the serial port

Memory Map

0x00000000 — 0x00008000
0x00100000 — 0x00120000
0x00200000 — 0x00400000
0x04000000 — 0x04004000
0x40000000 — 0x50000000
0x60000000 — 0x70000000

Code SRAM
ROM

Code DRAM
Data SRAM

10

Data DRAM

Dumping the Flash

ldentify the flash read function in IDA

Break execution at beginning of Flash read
function

Modify the parameters to read the part of the
Flash that is interesting

Dump the memory where the Flash data was
read to with the GDB “dump binary ... “
command

Following the execution

* Keeping control is challenging

e After loading the firmware from Flash to
DRAM, this memory range is marked as read-
only, breaking SW breakpoints = Overwrite
the write-protect instruction with NOP

* Loading of the OS overwrites exception vector
table, removing our debug exception handler
- Watch flash loads and block the one writing

to address 0Ox0

Following the execution (2)

e OS uses the whole code SRAM where the GDB
stub resides 2 Move GDB stub to free DRAM
memory after DRAM has been initialized and
before SRAM is overwritten

* Execution “escapes” the debugger = Put a
breakpoint in the UART interrupt handler, so
that a CTRL+C will trigger the breakpoint

Dissecting the realtime OS

e The OS is custom kernel
 Fixed number of tasks
* Preemptive

* Event-based: Each task has an accepted events
mask, tasks can wait for a specific event or yield
with generating an event to other tasks

Tasks in the bootloader FW

Interrupt handler: Handles all hardware
Interrupts

Read/write task: Handles accesses to the
magnetic platters

SATA task: Parses SATA requests and sends
responses

Diagnostic task?
Load main firmware task?

But walit ...

Why did you say “Bootloader FW”?

Well, actually the firmware from Flash serves
only to load the actual firmware from the disk

A very small unpacker stub then distributes
this firmware in memory and runs it

The main firmware is based on the same OS as
the bootloader firmware

Tasks in the main FW

nterrupt handler
Read/write task
Diagnostic task
SATA task

Cache manager task
2?7 task

Power management task

Data flow for a SATA request

* Problems
* Initial SATA packet written to memory by HW

e All data is kept in global variables, dataflow is
hard to trace ...

Interrupt

handler

Tapping into the data flow

* Basically you can change data anywhere on its
way to the R/W task
* | chose to intercept the flow in the cache task

* This is where | first found a data structure pointing
to the packet

 Modifying the packet data would give us a full-
blown backdoor ...

Checksums

* Unfortunately, the drive raises an error and
crashes when data is modified

* Observing the data in memory closely shows
that each 512-byte packet is followed by 6
addional bytes

* One 16-bit checksum
* One 32-bit checksum

e After trying to figure the algorithm out for 2
days, | found it in the code ...

Checksums (2)

B loc_276DCC B 'l
—
V4
s v B
loc_276DCC
oMp R4, R1
BCC loc_276DB2
|
| Y
a2 B a2 B
MOV R3, SP
loc_276DR2 LORH R1, [R3,#0x184var_18)
MOV R3, SP EORS R1, R2
LDRH R3, [R3,#0x184var_18)[[sTR R1, [SP,#0x18+var_18)
‘ ' LORH RS, [RO,R4) LDR R1, =unk_60C7A70
LSLS R7, R3, #0x10 MOVS R2, #:
P P BPL loc_276DC4 SURS R1, #0xC
s B3 s B W LORH R1, [R1,#(word_60C79B2 - Ox60C7980))
ADDS RO, R1, RO
LSLS R3, R3, #1 MOVS R3, #:
EORS R3, RS loc_276DC4 :gv ':1“": ginn
EORS R3, R6 LSLS R3, R3, #1 poP {R3-R7,BC)
End of function dat checksum 16 bit
B loc_276DC8| |[EORS R3, RS ’ B Ksum_16_bi

J

—

loc_276DC4
LSLS R3, R3, #1
EORS R3, RS

Ty
L 2 B
loc_276DC8
ADDS R4, R4, #2
STR R3, [SP,#0x18+4var 18)

e —

Roll your own backdoor

* Now we have all components for a backdoor

e Wait for a magic packet (written to LBA x) that
tells you which packet (at LBA y) to exfiltrate

* Read that packet from LBA 'y, fix the checksumes,
and write it to LBA x

 When LBA x is read again, a copy of the data at
LBA y is retrieved

Distribute your FW

* Currently Seagate firmwares are updated
through a DOS utility

 Hdparm also has a firmware update
functionality, but it did not work for my drive

* The DOS utility could easily be embedded into
the system start to flash the HDD once the
computer is rebooted

Detection

A modified FW is almost impossible to detect
(except if you trigger the malicious behaviour)

A modified FW can pretend to do a firmware
upgrade while not doing one to protect itself

Once written to the Flash, the firmware can
burn a fuse of the Flash chip and make it read-
only

Only secure detection is through extraction
and comparison

Countermeasures

Sign that FW and only accept signed FWs!
Do not allow code injection in the bootloader

Does not help against bugs that allow code
Injection ...

Do not leave anybody with root privileges near
your hard drive

Demo

It’s demo timel!ll!

Questions

References

L WS R

http://www.eurecom.fr

http://www.s3.eurecom.fr/~zaddach/index.html

http://spritesmods.com/?art=hddhack&page=1

http://forum.hddguru.com

http://www.s3.eurecom.fr/docs/acsacl3 zaddach.pdf

GDB Stub

 GDB can connect to targets using a serial
interface and a simple protocol

* There is a stub implementation in the source
code tree, but not for ARM and it’s bloated
(for my purpose)

* 6 primitives are enough to give debugging
support with software breakpoints:

Read bytes, write bytes, read registers, write
registers, continue and get signal

Diagnostic Overlays

The firmware supports overlays, which is a
means for OEMs to include custom
functionality

Overlays can hook into control flow and add
functionality

An overlay for diagnostics is provided with the
original firmware

The overlay is loaded once its functionality is
needed

Reversing the firmware file format

* Try to find flash dump and memory dumps in a
firmware update file =2 Bingo!

* File is organized in sections, each section
containing

* First stage bootloader
* Flash image
* Main firmware
* QOverlays
* If you are interested, write me for my hackish
script

