
MJ0011
th_decoder@126.com

Using a Patched Vulnerability
to Bypass Windows 8 x64

Driver Signature Enforcement

mailto:th_decoder@126.com

• Background

• A Patched Vulnerability: CVE-2010-4398

• Bypass DSE on Windows7 x64

• Windows8 Kernel Security Improvements

• Bypass DSE on Windows8 x64

 Agenda

– x64 Driver Signature Enforcement(DSE)

– A new feature introduced from Vista x64, which requires a
special Kernel Mode Code Signing(KMCS) in order to load
kernel-mode driver even though administrator privilege.

– x64 OS kernel will use MiValidateImagePages and ci.dll's
callbacks to check whether kernel-mode driver has KMCS.

– If you try to load any kernel-mode module which is not certified
by KMCS, the loading will be refused.

 Background

 Background

– If an unsigned driver tries to install, it will pop-up window tips.

– Developers must purchase a Class 3 Commercial Software Publisher

Certificate from VeriSign.

– It costs $500 per year, and is only available to commercial entities.

Background

– Known x64 DSE bypass method in the past:

• Press F8 button during system boot and choose "Disable Driver

Signature Enforcement"

– It's messy to press F8 and choose it every time

– Ugly watermark will be displayed on the desktop

• Bypass DSE with modified MBR

– Modify MBR at risk. It may introduce malicious software

– Not compatible with Secure Boot in Windows8

– Need to restart to be effiective

• Using kernel 0day vulnerability to bypass DSE (eg. CVE-2012-0217)

– No public stable exploit code

– Microsoft will fix kernel vulnerabilities quickly.

Background

– I want to show a better way to bypass x64 DSE. It demands:

• Bypass automatically. No need to manually set.

• More safer. Without modify MBR or other boot stuff.

• Effective immediately without reboot.

• Do not use 0day vulnerabilities.

• Support Windows7 and Windows8 with fully patched.

Background

– Target: A patched kernel vulnerability : CVE-2010-4398

• Driver Improper Interaction with Windows Kernel Vulnerability

– All Microsoft Windows NT operating systems are affected
from Windows NT4 to Windows 7 and Server 2008 R2. The
code to cause this vulnerability has been written in 20 years
ago(1992).

– After I reported this vulnerability to Microsoft in 2010,
Microsoft released the security bulletin (MS11-011) in Mar
2011 to fix it.

 A Patched Vulnerability: CVE-2010-4398

– Formation conditions of CVE-2010-4398:

• Use RTL_QUERY_REGISTRY_DIRECT flag.

• Not initialize EntryContext according to key value type.

– The root cause of CVE-2010-4398:

• When using RTL_QUERY_REGISTRY_DIRECT flag,

RtlQueryRegistryValues copy data into EntryContext according

to key value type.

• According to key value type, EntryContext need to set in

different buffer length. The problem is that key value type in

registry can be changed

• If the given key value type is unexpected and the expected

buffer length is too small, it will cause stack overflow.

 A Patched Vulnerability: CVE-2010-4398

– Starting with MS11-011, Microsoft has gradually fix this
vulnerability:

• Use

HKLM\SYSTEM\CurrentControlSet\Control\RtlQueryRegistryConf

ig\TrustedTypesKeyList to control read operations of registry

which using by known improper interaction drivers

• New drivers can use RTL_QUERY_REGISTRY_TYPECHECK flag to

mandatory RtlQueryRegistryValues to do the type check. If value

type does not match, it will return a failure (mainly used in

Windows8).

• Initilaize EntryContext properly, eg. if expected value type is

REG_DWORD then initialize it to 0.

• Add security cookie check in functions which calling

RtlQueryRegistryValues(mainly used in Windows8).

 A Patched Vulnerability: CVE-2010-4398

 TrustedTypesKeyList on Windows7 x64

 A Patched Vulnerability : CVE-2010-4398

– The situation of CVE-2010-4398 on Windows7 with fully patched

• The TrustedTypesKeyList config only protect user-specific areas of

registry, but sensitive areas of registry is unprotect.

• The TrustedTypesKeyList config can be deleted by Admin user

• The Windows7 with fully patched has fixed some known positions

which can trigger this vulnerability under admin privileges

– nt!RtlQueryTimezoneInformation

– win32k!SetDPISettings

– win32k!bReadUserSystemEUDCRegistry …

But, because of cost considerations, there are a lot of drivers with

improper interaction problem are unfixed

– The target driver to bypass Windows7 x64 DSE: AppID.sys

 Bypass DSE on Windows7 x64

– AppID.sys: It is the kernel part of Application Identity service, and it

helps AppLocker to block specified program.

– AppID!AipReadConfigOption, uses RtlQueryRegistryValues to read

registy key values from:

 HKLM\SYSTEM\CurrentControlSet\Control\AppID. It has improper

interaction problem.

– AppID.sys reserves REG_DWORD length of buffer for the key value

data. If the data length exceeds, it will cause stack overflow.

– AipReadConfigOptions can be triggered in the context of caller

process by DeviceIoControl, and this function has no security cookie

checks. So we can directly overwrite the return address by stack

overflow and jump to shell code.

 Bypass DSE on Windows7 x64

– The complete process of bypass Windows7x64 DSE:

• The AppID device is set to a specific security descriptor, only

LocalService account's process can open it. Here I duplicate the

token from AppIDSvc service's process, use duplicated token to

create new process and open the AppID device.

• Set Control\AppID\EnablePath key value data with enough

length in REG_BINARY format, and overwrite the return address.

• Send control code 0x22A010 to AppID device. It will trigger

AipReadConfigOptions.

• Jump to shell code, and modify nt!g_CiEnabled to 0, then

disable x64 DSE.

– Demo source code: http://code.google.com/p/bypass-x64-dse

 Bypass DSE on Windows7 x64

http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse

– Kernel Security Improvements on Windows8:

• Fixed improper interaction problem for all the Win8 drivers

– Now there are initialize EntryContext accroding to key value

type properly, and add security cookie check for every function

which calling RtlQueryRegistryValues.

• Introducing the new RtlQueryRegistryValuesEx function.

– Windows8 drivers use this new function as much as possible. If

driver calls new function and the registy key is untrusted, it

would cause BugCheck = KERNEL_SECURITY_CHECK_FAILURE.

• Enhanced kernel's security cookie mechanism

– It makes forcasting kernel security cookie becomes almost

impossible.

• Add SMEP and non-executable non-paged pool supports.

 Windows8 Kernel Security Improvements

– In the past, kernel security cookie could be forcasted:

• J00ru:“Windows Kernel-mode GS Cookies subverted”

• The paper introduced a way to using module load time to

forcast security cookie, bypass security cookie check and exploit

CVE-2010-4398. The success rate of more than 46%.

– Windows8 enhances kernel security cookie mechanism:

• OS loader tries 5 ways to get high entropy source.

• It includes external entropy, TPM entropy, clock entropy, ACPI

entropy and RDRAND entropy.

• The RDRAND entropy is generated by Intel Secure Key

technology, using new "RDRAND" CPU instruction to generate

high quality entropy through hardware.

– It is difficult to forcast security cookie on Windows8 x64.

 Windows8 Kernel Security Improvements

– SMEP: Supervisor-Mode Execution Prevention.

– The new feature introduced in Intel 3rd generation Core processor -

Ivy Bridge: After enabling SMEP, it could allows pages to be protected

from supervisor mode instruction fetches.

– Windows8 enables SMEP by default:(cr4.SMEP = 1), When kernel code

running under Ring0 directly jump to code in ring3, it will cause Bug

Check = ATTEMPTED_EXECUTE_OF_NONEXECUTE_MEMORY.

– The most of kernel vulnerability attacks use some trick to make kernel

code jump to preset shell code which is placed in user address space

– So most of kernel exploits(included the exploit for CVE-2010-4398)

can not use directly on Windows8.

 Windows8 Kernel Security Improvements

– Artem Shishkin . Intel SMEP overview and partial bypass on
Windows 8

• This paper mentioned a way to manipulate data in win32k

object , and get the address of win32k object to bypass SMEP.

– It only can use on Windows8 x86, dose not work on
Windows8 x64

– Paged session pool used in win32k is non-executable on
Windows8 x64

– Combined with the newly introduced and widely used
'NonpagedPoolNx' type pool and non-executable paged
pool , bypassing SMEP with manipulate kernel data can not
work on Windows8 x64

 Windows8 Kernel Security Improvements

– To use CVE-2010-4398 to bypass DSE on Windows8 x64 , we

need to solve these problems:

• Find driver with improper interaction problem which accords

with the following conditions:

– Do not initialize EntryContext properly

– The function which calls RtlQueryRegistryValues does not be

protected by security cookie.

– Do not use RTL_QUERY_REGISTRY_TYPECHECK flag.

• Bypass SMEP

 Bypass DSE on Windows8 x64

– It looks like difficult to find suitable drivers:

 I manually reviewed all the drivers on Windows8 x64 which
calling RtlQueryRegistryValues(Ex) function. But I did not find
matching driver. All the drivers on Windows8 did the right
interaction.

– Using CVE-2010-4398 to Windows8 x64 DSE is impossible?

– No! With administrator privileges, we can reuse signed driver
in Windows7.

– My method: to find a driver which has improper interaction
problem on Windows7. If this driver has embedded KMCS, it
can be load on Windows8 x64!

– Finally, I find the mathced driver: mountmgr.sys.

 Bypass DSE on Windows8 x64

– mountmgr.sys: Mount point manager driver which handles
volume assignments.

– It has embedded KMCS which can be verified on Windows8.

– Mountmgr!DriverEntry->MountmgrReadNoAutoMount
function has RtlQueryRegistryValues improper interaction
problem, and it has no security cookie check.

– We can unload the new mountmgr.sys with NtLoadDriver API
, and reload the old mountmgr.sys with NtLoadDriver . Then
triggers stack overflow.

– It reads registy key value from:
HKLM\System\CurrentControlSet\Services\Mountmgr\NoAut
oMount

 Bypass DSE on Windows8 x64

– Bypass SMEP: use ROP（Return-Oriented Programming）

– Artem Shishkin & Ilya Smit:Bypassing Intel SMEP on Windows 8
x64 Using Return-oriented Programming(2012/9/19)

• This paper mentioned a way to set ROP chain and modifying

cr4.SMEP to 0 to bypass SMEP

• Can not use in the scene of mountmgr: It triggers stack overflow

in DriverEntry which in the context of SYSTEM process. Even if we

turned off SMEP, it also can not access user mode memory

– My method: Setting ROP chain with

 ExAllocatePool + MmCopyVirtualMemory combo to bypass SMEP

 Bypass DSE on Windows8 x64

– Setting ROP chain under x64: most of API use registers to
pass parameters. So we need to control registers.

– The compact design of ROP chain:

• HvlEndSystemInterrupt : manipulate rdx / rax / rcx

• KeInitializeEnumerationContext: save rcx to address

• IofCallDriver: manipulate jump

• RtlIsServicePackVersionInstalled : manipulate r8

• EtwEventEnabled : manipulate r9

• KeSetHardwareCounterConfiguration : manipulate r8

• PsGetThreadTeb : load rax from address

• MmMapIoSpace : manipulate rsp

– All of above are exported functions, without brute force code
search.

 Bypass DSE on Windows8 x64

– The first problem in setting ROP chain:

• The MountmgrReadNoAutoMount will overwrite stack of

outside function, and it will overwrite an important variable

DeviceObject.

• Before DriverEntry returning, it would call

IoRegisterShutdownNotification to register shutdown callback

for this DeviceObject. A wrong variable will cause BSOD.

• Solution: Use NtQuerySystemInformation to get current thread

object address, and use it to overwrite DeviceObject variable.

• IoRegisterShutdownNotification will do the bit-or operation with

DeviceObject->Flags(offset 0x30) and

DO_SHUTDOWN_REGISTERED. There corresponds StackLimit

field in thread object, and do not affect of thread execution.

• After bypassing SMEP and taking control, we need unregister

the shutdown callback and fix thread object.

 Bypass DSE on Windows8 x64

– The second problem in setting ROP chain:

• Under x64, ExAllocatePool will destroy rsp+8~rsp+0x20
and use this area as temporary variables.

• That will destroy the ROP chain.

• Solution: put a 'add rsp , 0x28' invoke next to the
ExAllocatePool 's invoke, and bypass the temporary
variables area.

• We can continue to run ROP chain after bypassed
temporary variables area.

 Bypass DSE on Windows8 x64

– The complete process of bypass DSE on Windows8 x64:

• Prepare imformation of ROP chain, and write stack data into
NoAutoMount key value.

• Call NtUnloadDriver to unload loaded mountmgr driver，and
modify service registy key value, then call NtLoadDriver to load
old mountmgr driver.

• Start to trigger the calling of ROP chain, control register to call
ExAllocatePool to allocate kernel executable memory.

• Control register to call MmCopyVirtualMemory and copy user

mode shell code memory from attack process into kernel space

• Load the address from KiBugcheckData and jump to shell code

• Fix up stack environment and shutdown callback, modify
ci!g_CiOptions to disable DSE on Windows8

– Demo source code: http://code.google.com/p/bypass-x64-dse

 Bypass DSE on Windows8 x64

http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse
http://code.google.com/p/bypass-x64-dse

– J00ru . Exploiting the otherwise non-exploitable:Windows
Kernel-mode GS Cookies subverted

– Artem Shishkin . Intel SMEP overview and partial bypass on
Windows 8

– Artem Shishkin & Ilya Smit. Bypassing Intel SMEP on
Windows 8 x64 Using Return-oriented Programming

 Reference

http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://vexillium.org/dl.php?/Windows_Kernel-mode_GS_Cookies_subverted.pdf
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html

 Q&A

• Q&A

