
Find Your Own iOS 
Kernel Bug

Chen Xiaobo
&

Xu Hao

1



Content

iOS Kernel Basics

Summary of Known Bugs

Passive Fuzz

Active Fuzz

Analyze Real Bug

Conclusion

2



iOS Kernel Basics

OSX is older that iOS

Guess iOS kernel is developed based on OSX kernel

Learn from OSX kernel

OSX kernel concepts

Early derived from FreeBSD kernel

Named as XNU

Open source

3



XNU

Open Source

http://www.opensource.apple.com/source/xnu/
xnu-2050.7.9/

Important components

Mach - Low level abstraction of kernel

BSD - High level abstraction of kernel

IOKit - Apple kernel extension framework

4



BSD

Implement File System, Socket and ...

Export POSIX API

Basic interface between kernel and user space

sysent[] - store kernel function address

typedef int32_t sy_call_t(struct proc *, void *, int *);

function call number - /usr/include/sys/syscall.h

5



IOKit
Framework for kernel extension

Subset of C++ - Object-Oriented driver programming

6



IOKit Objects
OSObject

Root object of all IOKit objects

Overwrite new operator to alloc memory

Declare “init” method to initialize object self

OSMetaClass

Run-time object type check

According to object name

OSDynamicCast

7



IOKit Objects

IOService

Define an interface for most kernel 
extension

Basic methods - init / start / stop / 
attach / detach / probe

ioreg - list all attached IOService

Available in Cydia

8



Write IOKit

Service - Inherit from IOService

Overwrite basic methods - init / start / stop / probe

Control - Inherit from IOUserClient

Allow user space control

Modify plist file

At least one IOKitPersonalities

CFBundleIdentifier/IOClass/IOProviderClass/IOMatchCategory/
IOUserClientClass/IOResourceMatch

9



Kernelcache
Store all kernel modules (XNU / extensions) into one cache file

iBoot will load the whole kernelcache and jump to entry

An encrypted and packed IMG3 file

/System/Library/Caches/com.apple.kernelcaches/kernelcache

For old devices (A4 devices)

Use xpwntool to decrypt original cache with IV + KEY

A5 devices

No IV + KEY available

10



Kernelcache

How to get kernelcache for A5 devices

Dump from kernel memory

task_for_pid(0) & vm_read to dump kernel memory

Read size must less then 0x1000 for once

Find all Mach-O header - test magic 0xFEEDFACE

Determine the whole cache size

Open with IDA - fail

Lack of prelink info

11



Kernelcache
Dump each kernel extension

Write a kextstat for iOS

Just call CFDictionaryRef OSKextCopyLoadedKextInfo(CFArrayRef, CFArrayRef) 
from IOKit framework

12



Reverse Kernel
Kernelcache is combined with lots of Mach-O files

IDA Pro 6.2 could identify each Mach-O file

Reverse the whole kernel together

Open “Segmentation” view

13



Reverse IOKit Extension

IOKit constructor 
example

First call 
OSObject::new to 
allocate memory

Then init IOService

At last init 
OSMetaClass

14



Debug iOS Kernel

KDP code is included in kernel

KDP via UART

SerialKDPProxy to perform proxy between serial and UDP

Need serial communicate between USB and Dock connector

Make a cable by your own

Using redsn0w to set boot-args

-a “-v debug=0x09”

15



Debug iOS Kernel

A5 CPU Devices

No limera1n vulnerability - no way to set boot-arg

Need a kernel exploit to cheat kernel with boot-arg & 
debug enable

See “iOS5 An Exploitation Nightmare” from Stefan Esser 
for details

16



Content

iOS Kernel Basics

Summary of Known Bugs

Passive Fuzz

Active Fuzz

Analyze Real Bug

Conclusion

17



Summary of  Known Bugs

iOS kernel attack surface

Socket/Syscalls

ioctl

FileSystem drivers

HFS

iOKit 

Device drivers (USB/Baseband etc)

18



CVE-2010-2973

CVE-2010-2973 - IOSurfaceRoot integer overflow

Used in the jailbreakme 2 as PE exploit

Can be triggered by mobile user apps (MobileSafari)

Malformed IOSurfaceAllocSize/IOSurfaceBytesPerRow/
IOSurfaceHeight/IOSurfaceWidth values in the plist

Create a Surface object using above plist and return a userland ptr

Calling memcpy to overflow the important kernel structure to 
disable the security protection

19



CVE-2010-2973

CVE-2010-2973 - IOSurfaceRoot integer overflow

The plist

Exploit: https://github.com/comex/star/blob/master/goo/zero.py

20

https://github.com/comex/star/blob/master/goo/zero.py
https://github.com/comex/star/blob/master/goo/zero.py


CVE-2011-0227

CVE-2011-0227 - IOMobileFrameBuffer Type 
Conversion Issue

RootCause happens in the IOMobileFrameBuffer are not 
properly to check the object when doing conversion

Suppose to call OSDynamicCast() while doing type 
casting/conversion

The user able to control the vtable function pointer to get 
code execution

21



CVE-2011-0227

CVE-2011-0227 - IOMobileFrameBuffer Type Conversion Issue

PoC:

Fully exploit: https://github.com/comex/star_/blob/master/
catalog/catalog.py

22

https://github.com/comex/star_/blob/master/catalog/catalog.py
https://github.com/comex/star_/blob/master/catalog/catalog.py
https://github.com/comex/star_/blob/master/catalog/catalog.py
https://github.com/comex/star_/blob/master/catalog/catalog.py


Summary of  Known Bugs

Conclusion

They are both PE vulns because it is happens in the IOKit 
drivers framework

Closed source and less people pay attention

Good target for bug hunting!

23



Content

iOS Kernel Basics

Summary of Known Bugs

Passive Fuzz

Active Fuzz

Analyze Real Bug

Conclusion

24



Passive Fuzz
Passive Fuzz

First idea coming out is fuzzing

Less work with good results

Write a IOKit client to understand how the IOKit works

Fuzzing parameters for IOConnectCallStructMethod/
IOConnectCallScalarMethod

In the low-level both above APIs are calling to the 
IOConnectCallMethod

25



Passive Fuzz

Why we need passive fuzzing?

They key point is pay less works because we are lazy to audit 
code :P

Just like hook DeviceIoControl on the win32 to hunting kernel 
bugs

We are going to hook IOConnectCallMethod to do the passive 
fuzzing

26



Passive Fuzz

The Preparation

Finding a good hook framework for iOS

MobileSubstrate

http://iphonedevwiki.net/index.php/MobileSubstrate

MSHookFunction/MSHookMessage for C/Object Method 
hook

Not much documents but enough to make it work

27

http://iphonedevwiki.net/index.php/MobileSubstrate
http://iphonedevwiki.net/index.php/MobileSubstrate


Passive Fuzz
TheOS/Tweak

Base the mobilesubstrate but more user-friendly

https://github.com/DHowett/theos

28

https://github.com/DHowett/theos
https://github.com/DHowett/theos


Passive Fuzz

You can also using interpose (dyld function)

Redirect the functions in the import table

No libmobilesubstrate required.

Inject your dylib via DYLD_INSERT_LIBRARIES to 
make your fuzzer running!

29



Passive Fuzz

Tips

Struct object could be Data/Plist(XML), So pay some work 
here.  

Scalar object are integer values only, random enough to find 
some interesting stuffs.

Results:

NULL pointer deference/Kernel Use-after-free/handled 
panic exception

30



Content

iOS Kernel Basics

Summary of Known Bugs

Passive Fuzz

Active Fuzz

Analyze Real Bug

Conclusion

31



Active Fuzz

Weakness of passive fuzz

Only cover small amount of IOKit interfaces

Needs interaction - keep using your iPhone

Not so efficient - waste time

Advantage of active fuzz

Cover most of IOKit interfaces

Automatically and efficient

32



Rough Idea

Find all IOKit drivers with IOUserClient

Identify all external methods of the driver

Test all those methods

33



External Methods
External methods are used by IOKit to provide function to user-
space application

Application call IOConnectCallMethod to control driver

selector - which method should be called

input / output - Array of uint64_t or struct data

34



Kernel Dispatch
IOConnectCallMethod -> IOUserClient:: externalMethod

if dispatch != NULL

Check input and output size & call dispatch->function

else call getTargetAndMethodForIndex

Check type and size & call method->func

35



IOKit Implement

Overwrite externalMethod

Example

36



IOKit Implement

37



IOKit Implement

Overwrite getTargetAndMethodForIndex

Example

38



Key Point

Know what to fuzz

Get IOExternalMethodDispatch sMethods[]

Get IOExternalMethod methodTemplate[]

39



How

For the IOKit drivers without source code

Reverse the KernelCache with symbol problem resolved

IOKit structure you should know 

IOExternalMethodDispatch & IOExternalMethod

Filter the IOKit keywords in the IDA name window

sMethods etc.

Will list all the IOKit drivers interface

40



sMethods

We have the interface names & address

41



sMethods
But there are just bytes in the method dispatch table

IDA pro currently not handle it properly

42



sMethods
After some manually work (Mark to the DCD)

We can see some function pointers, but still ugly

43



Work Todo

Need some IDA Python works here

Add IOKit struct information in the idb file

(IOExternalMethodDispatch & IOExternalMethod)

Find the dispatch table range and mark it to the correct 
struct.

44



Result

Looks better now

We have dispatch function, flag, input/output count.

45



Correct Input

Flags defines

I = input O = output

For example, type 3 means:

Struct input & output

We must pass the correct input/output type and count, 
otherwise the request will be rejected

Start coding your own actively fuzzer!

46



Extra

You can also add the vtable information if you like to audit code

Before

After                                                             

47



Content

iOS Kernel Basics

Summary of Known Bugs

Passive Fuzz

Active Fuzz

Analyze Real Bug

Conclusion

48



Are There Bugs?
Definitely YES

Crashes could be easily generated by our fuzzer

Actually kernel code of iOS is not as good as you imagine

However analyzing crash is a hard job

No code or symbols for most IOKit drivers

Kernel debug is kinda of crap

Any exploitable bug?

This is a QUESTION

49



IOKit Bug Analysis
Simplify crash code

Code is generated by fuzzer - there are many IOConnectCallMethod calls

Simplify the code could help you a lot when doing static analysis

Look at panic log

fault_type & register values

Static analysis

Understand the bug and trigger path

Debug

Write exploit

50



Bug Sample I

Let’s look at the code first

51



Bug Sample I
Then the panic log

PC = 0x80455c3c

fault_addr = 0x0

52



Bug Sample I

Where did it crash

Try to read data at R1(=0) cause the panic

R1 is the second parameter of this function

It is mostly like a NULL ptr reference bug :(

We shall dig deeper anyway

53



Bug Sample I

Locate sMethod array

First to find AppleVXD375UserClient::externalMethod, which 
should overwrite IOUserClient’s method

IOUserClient has symbols, see vtable for it

externalMethod pointer offset in vtable

54



Bug Sample I

Locate sMethod array

Search IOUserClient::registerNotificationPort address in “const” 
segment

Find externalMethod pointer in vtable for AppleVXD375UserClient

AppleVXD375UserClient::externalMethod 

Get IOExternalMethodDispatch struct from sMethod array

Call IOUserClient::externalMethod to dispatch it

55



Bug Sample I

sMethod = 0x80469700

56



Bug Sample I

selector = 1 dispatch struct in sMethod

function address = 0x80457534

checkStructureInputSize = 0x4

checkStructureOutputSize = 0x108

Remember the trigger code?

57



Bug Sample I

The whole call path

externalMethod -> sub_ 80457534 -> sub_ 804577EC -> 
sub_8045779C -> sub_80456768 -> sub_80455C34 -> panic

sub_ 804577EC call OSObject::release first

This method should be used to destroy AppleVXD375UserClient itself

sub_8045779C should be responsible for freeing memory

R1(=0) maybe some class or struct address stored in 
AppleVXD375UserClient object

58



Bug Sample I

Understand this bug

We manually try to destroy AppleVXD375UserClient

When in procedure, it will manipulate some object without 
checking if it is already created

Lacks of basic check code like

if (obj->ptr != NULL)

We are not able to control PC register

59



Bug Sample II

Code first

60



Bug Sample II

Panic log

PC = 0x00000000

Looks better than last one

61



Bug Sample II

Where did it crash

We got useless PC and no call stack

But luckily we had LR - store return address

Looks like calling method of certain object

R4 - object pointer 

R0 - vtable 

62



Bug Sample II

Crash code snapshot

63



Bug Sample II

Crash code analysis

Input

R0 - IOAccelUserClient *self

R1 - int index

IOAccel *service = self + 0x78

OSObject *array[] = service + 0x10

Call array[index]->method = NULL

64



Bug Sample II

Weird

Why the object’s method pointer is NULL

Guess

Mistake it as a different object without checking

Todo

Figure out what’s at 0x10 offset

65



Bug Sample II

Locate external methods

This time it overwrite getTargetAndMethodForIndex

66



Bug Sample II

IOExternalMethod methodTemplate[5]

67



Bug Sample II

Where is selector 6 function ?

Check reference to IOAccelUserClient::vtable

It has a child object - IOIMGSGXUserClient

Easy to find getTargetAndMethodForIndex again

68



Bug Sample II

When selector > 5, use its own methodTemplate[3]

69



Bug Sample II

What’s at offset 0x10 ?

Look inside into selector 6 function

70



Bug Sample II

Object is created, check vtable 0x8090E5B8

0x8090E5B8+0x3C = 0x8090E5F4

71



Bug Sample II

Here is the story

selector 6 function call sub_80907A4C to create an object 
and put it in object array at 0x10 offset

selector 3 function get object pointer from the array and call 
its method without checking its class type

Actually the child has its own create/destroy method. If the 
child create an object and make father to destroy it, PANIC !

Apple should call more OSMetaClassBase::safeMetaCast :P

72



Content

iOS Kernel Basics

Summary of Known Bugs

Passive Fuzz

Active Fuzz

Analyze Real Bug

Conclusion

73



Conclusion

Apple should audit iOS kernel code, especially code 
of IOKit extensions

Since debug is quite hard, static analysis according to 
panic log is very helpful

Fuzz your own iOS kernel bug !

74


