Microsoft | Trustworthy Computing

Exploit Mitigation Improvements
in Windows 8

Chengyun Chu
Senior Security Development Lead
MSRC Engineering

Micresoft | Trustworthy Computing

Announced

Vasilis Pappas

* Wins $200,000 for his idea, kBouncer - an ef
transparent ROP mitigation technique.

Ivan Fratric

* Wins $50,000 for his idea, ROPGuard - a system that can detect

and prevent the currently used forms of return-oriented
programming (ROP) attacks at runtime.

Jared DeMott

* Wins an MSDN subscription, valued at $10,000, and was also
surprised on stage live with a check for $10,000 cash for his
idea, /ROP - a system that lowers the effect of address space
disclosures and mitigates known ROP exploits.

antlmalware software.

develop reliable exploits for vulnerabilities.

.
NCNYNOoMmMmice
— \

WO W RV

§Gains per use @)ost to acquire vﬁlnerability

= X - +

tOpportunltles to use \tCost to weapomze
~ o

Attacker
Return

|

|
o

i

eystate of memory safety exploits

Most systems are not » About 6% of MSRT detections were likely caused by exploits [29]

. . » Updates were available for more than a year for most of the exploited
compromised by exploits issues [29]

Most exploits target third 11 of 13 CVEs targeted by popular exploit kits in 2011 were for issues
party app|ications in non-Microsoft applications [27]

Most exploits target older
versions of Windows (e.g.
XP)

* Only 5% of 184 sampled exploits succeeded on Windows 7 [28]
* ASLR and other mitigations in Windows 7 make exploitation costly [30]

Most exploits fail when - 14 of 19 exploits from popular exploit kits fail with DEP enabled [27]
mitigations are enabled * 89% of 184 sampled exploits failed with EMET enabled on XP [28]

Exploits that bypass
mitigations & target the
latest products do exist

» Zero-day issues were exploited in sophisticated attacks (Stuxnet, Duqu)
 Exploits were written for Chrome and IE9 for Pwn20wn 2012

Bottom line: we must continue to increase the cost of exploitation for attackers

9

S n
cC
S =
Ooa
wn 5
Bl =
Q
'S O
v O
—_ >
m.e
ek

Enhanced /GS, range checks, sealed optimization, and virtual table guard

CODE GENERATION

a2 Yl Yl o ludV Rad VA" AR FalV |

11

Enhanced GS stack buffer overr
Released with Visual Studio 2010 [1]
Windows 8 is built with this enabled

* GS heuristics now protect more functions
Non-pointer arrays and POD structures

* GS optimization removes unnecessary checks
Safety proof means no check is needed

* Closes gaps in protection
MS04-035, MS06-054, MS07-017 (ANI)

12

I —

-

Range Ghec

BN a

S
/7D

Compiler-inserted array bounds check'(via /GS)

CHAR Buffer[2506];
UINT i; // possibly attacker controlled

if (i >= ARRAYSIZE (Buffer)) { € compiler inserted

report rangecheckfailure() ;

Completely mitigates certain vulnerabilities
CVE-2009-2512, CVE-2010-2555

Bounds check insertion is limited to specific scenarios
Assignment of NUL to a fixed-size stack/global array

13

Sea

N
Q)
.
e

)CD
IQ_
20
0
N~

“

* Optimization for “sealed” C++ types & methods
class COptionElement sealed : public CElement

{

DECLARE_CLASS TYPES(COptionElement, CElement)

* Virtual method calls become direct calls

Without sealed COptionElement *optionElement; With sealed
optionElement->IsEnabled() ;

S et e s
CEl t::IsEnabled
call qword ptr [rax+920h] ca emen sEnable

* Eliminating indirect calls reduces exploitation attack surface

Helps mitigate vulnerabilities like CVE-2011-1996
Devirtualized ~4,500 calls in mshtml.dll and ~13,000 in mso.dll

14

IE10 has enabled
this for a handful of
key classes in
mshtml.dll

CElement:: vftable
VirtualMethod1
VirtualMethod?2
VirtualMethod3
VirtualMethod4

63700e88

_vtguard

6370088

Force ASLR, bottom-up/top-down randomization, and high entropy

ADDRESS SPACE LAYOUT

S)Y VLIS =N /ISnnS)

RANDOMIZATION

16

* ASLR was first introducecd
- Led to a big shift in attacker mentality

* Attackers now depend on gaps in ASLR
- EXEs/DLLs not linked with /DYNAMICBASE [?]

- Address space spraying (heap/JIT) [3]
- Predictable memory regions [4]
Information disclosures [5]

* ASLR has been substantially improved in
Windows 8

17

Images are not
randomized unless the
DYNAMIC_BASE bit is set

* Processes can now force non-ASLR images to be randomized
Behaves as if an image’s preferred base is not available
Bottom-up randomization provides entropy for these images

* Processes must opt-in to receive this behavior

Also supported on Windows 7 with KB263908 installed
Outcome: attackers can no longer rely on non-ASLR images

18

Botto

Address space

Windows 8

* All bottom-up/top-down allocations are randomized
* Accomplished by biasing start address of allocations
* PEBs/TEBs now receive much more entropy
e Both are opt-in (EXE must be dynamicbase)

Outcome: predictable memory regions have been eliminated

19

High entropy ASLR for 64-bit
P processes

2N
ngh entropy « 1 TB of variance in bottom-up start address
bottom-up Breaks traditional address space spraying (heap/JIT)
randomization B Processes must opt-in to receive this behavior

>
High entropy

top-down

krandomization

» 8 GB of variance in top-down start address
« Automatically enabled if top-down randomization is on

>
High entropy

Image

krandomization

» Images based above 4 GB receive more entropy
 All system images have been moved above 4 GB

Outcome: probability of guessing an address is decreased and
disclosures of memory addresses must include more than the low 32 bits

20

{s

| G 1)

ASLR entropy improvemen

32-bit 64-bit 32-bit 64-bit 64-bit
(HE)
Bottom-up allocations (opt-in) 0) 0 24
Stacks 14 14 17 17 33
Heaps 3 5) 24
Top-down allocations (opt-in) 0) 0 17
PEBs/TEBs 4 4 17 17
EXE images 8 8
DLL images 8 8
Non-ASLR DLL images (opt-in) 0) 0

* 64-bit DLLs based below
4GB receive 14 bits, EXEs DIl anNd B4-DIL Pro €n / S|
below 4GB receive 8 bits on Windows 7 high entropy (HE) enabled

21

Removal of information dis

W11 1IN A §

ure
B 2212
: lon disclosures can be used to Bypass|

ASLR
* Disclosure via an arbitrary read is now less

reliable
Predictable mappings have been eliminated

* SharedUserData is still predictable, but less useful

0:000> u ntdll!NtWriteVirtualMemory L6 =
ntdll!NtWriteVirtualMemory: ! teChnlq ues
6a214724 802000000 mov eax, 2

6a214729 803000000 call ntdll!NtWriteVirtualMemory+0xd

(6a214731)

6a21472e c21400 ret 14h
6a214731 8bd4 mov edx, esp
62214733 0£34 sysenter
62214735 c3 ret

0

22

Integrity checks, guard pages, and allocation order randomization

WINDOWS HEAP

BARIANSAS AARAAS DIV

23

* Windows Vista heap hardening wa
Only one documented exploit that corrupts meta

* New attacks have been proposed by researchers
Corrupting the HEAP data structure [/]

LFH bucket overwrite [7]
LFH FreeEntryOffset corruption and depth desync [8,12]

* Real-world exploits target app data on the heap [10]
No heap safeguards exist today for this

24

HeapAlloc (heap, flags, size)

BEH, design changes & integrity
o checks
Change in Windows 8 Impact

LinkOffset corruption no longer possible

[8]

Multiple catch-all EH blocks removed Exceptions are no longer swallowed

LFH is now a bitmap-based allocator

Prevents attacks that try to corrupt HEAP
handle state [/]

HEAP CommitRoutine encoded with global Prevents attacks that enable reliable

HEAP handle can no longer be freed

key control of the CommitRoutine pointer [7]

Prevents unintended free of in-use heap
blocks [7]

Prevents various attacks that reallocate
an in-use block [8,11]

Validation of extended block header

Busy blocks cannot be allocated

Heap encoding is now enabled in kernel Better protection of heap entry headers
mode [19]

Outcome: attacking metadata used by the heap is now even more difficult

26

* Guard pages are now use
Designed to prevent & localize corruptio
-~ Touching a guard page results in an exception

* Insertion points for guard pages are constrained
Large allocations
Heap segments
Max-sized LFH subsegments (probabilistic on 32-bit)

27

* Allocation order is now nondeterm _
Exploits often rely on surgical heap layout manipulatic _.['1__0]
Randomization makes heap normalization unreliable

Windows 7 LFH block allocation behavior

Windows 8 LFH block allocation behavior ‘

* Maximizing reliability is challenging
Application-specific and vulnerability-specific
May require corrupting more data (increasing instability)
May require allocating more data (triggering guard pages)

28

DEP, ASLR, SMEP/PXN, NULL dereference protection, and pool integrity
checks

WINDOWS KERNEL

YAV B e YaY Y Yol VAud VAY I uud o=

29

.

Kernel vulnerabilities have been le

Relatively few remote kernel exploits exist
User mode exploitation is better researched

* Attack focus is shifting more toward the kernel

Interest in sandbox escapes is increasing

Local kernel exploitation techniques well-understood
New kernel pool attacks have been proposed [13]
Sophisticated remote kernel exploits exist [14,21]

30

roadly enabled in the Windows 8
kernel

| "_ Vol B ENal!

v ~

DEP is b

y regions were unnecessarily executable in Windows 7 and prior

XB6(PAE) | x64 | ARM |

non-executable non-

R TINIEIE e
———

= executable = non-executable

31

* Kernel ASLR was first added in Serv
4 bits of entropy for drivers, 5 bits for NTOS/HAL
Driver entropy was improved in Windows 7

* Entropy has been further improved in Windows
8

Biasing of kernel segment base
NTOS/HAL receive 22 bits (64-bit) and 12 bits (32-bit)
Various boot regions also randomized (PO idle stack)

32

* New processor security feature
Prevents supervisor from executing code in user

Most exploits for local kernel EOPs rely on this today
Requires Intel lvy Bridge or ARM with PXN support

* SMEP/PXN + DEP make exploitation more
difficult

- Strong mitigation for some issues (CVE-2010-2743 from
Stuxnet)

- Attackers need to leverage code in kernel images [15]

33

* Kernel NULL dereferences are a comma
Examples include MS08-025, MS08-061, MS09-001

* Local exploitation is generally straightforward
NULL is part of the user mode address space
Kernel currently allows user processes to map NULL page

* Windows 8 prohibits mapping of the first 64K

All kernel NULL dereferences become a DoS (not EoP)
NTVDM has been disabled by default as well

Enabling NTVDM will disable NULL dereference protection

34

* The kernel pool allocator is similar tc
Implementation is very different, though

* New integrity checks block various attacks [13]
Process quota pointer encoding
Lookaside, delay free, and pool page cookies
Poollndex bounds check
- Additional safe unlinking checks

35

Safe unlinking has been enabled globa
Previously only used in the heap and kernel pool
Now applies to all usage of LIST_ENTRY, closing known gaps
New “FastFail” mechanism enables rapid & safe process termination

* Improved entropy for GS and ASLR
Use of PRNG seeded by TPM/RDRAND/other sources
Hardcoded GS initialization is overridden by the OS
Addresses weaknesses described in attack research [17,18]

* Object manager hardened against reference count overflows

* Resolved kernel information disclosure via certain ggstem calls
[22]

ARM, Inbox, Modern style apps, IE 10, the new Office, and other
applications

DEFAULT SETTINGS

Y el "™ N oY el 2l B B AV Fale

37

ARM default settings

wary

1

All applicable mitigations are enabled on ARM

O
Y

E
ASLR (images)
ASLR (force relocate)

ORN®)
S5 | S

N/A (all images are
ASLR)

Kernel will fail
to load images
that do not

ASLR (bottom-up)
ASLR (top-down)
ASLR (high entropy) N/A (not 64-bit)
SEHOP N/A (not needed)
Heap termination

Kernel NULL
dereference

Kernel SMEP
Lack of application compatibility concerns enables us to be more aggressive

o
5

o
5

ASLR (opcomn) | on

o
5

-]

All applicable mitigations are enabledfor Windows Modern style apps

32 bit (x86) 64 bit (x64)
Default settings for

Windows 8 client

DEP
ASLR (images)

ASLR (force
relocate)

ASLR (bottom-up)
ASLR (top-down)

ASLR (high
entropy)

SEHOP

Heap termination

Ena
—

22
fLQ
e,
0
1f—|-
=
N
O

:(5.
2Q)
N~
N

I

« SetProcessMitigationPolicy API
« Linker flag

Opt-in mitigation IFEO | Proc Attr | API Linker flag
Bottom-up randomization /IDYNAMICBASE (on EXE)
Top-down randomization /IDYNAMICBASE (on EXE)

Bottom-up randomization /HIGHENTROPYVA (on
(high entropy) EXE)

ASLR /IDYNAMICBASE
Force ASLR None

DEP INXCOMPAT (on EXE)
SEHOP None*

Heap termination None*

* EXEs with a subsystem version >= 6.2 will
automatically enable these mitigations 40

* Writing exploits for Windows 8 will be'v
Some vulnerability classes are now entirely mitigate
Many attack techniques are now broken or unreliable

* Attackers will likely focus their attention on
Desktop apps that do not enable all applicable mitigations
Desktop apps running on previous versions of Windows
Refining methods of disclosing address space information
Researching new exploitation techniques [20]

* We will continue to evolve our mitigation technologies
41

* Upgrade to Windows 8 and IE 10

- 64-bit is best from a mitigations perspective
Enable “Enhanced Protected Mode” for IE 10

* Software vendors
Build your applications with Visual Studio 2012 [31]
Enable new opt-in mitigations

* Driver writers
Port your drivers to use NonPagedPoolNx

42

* Matt Miller
* Ken Johnson

Windows

Charles Chen, Greg Colombo, Jason Garms, Stephen Hufnagel, Arun Kishan, Joe
Laughlin, Pavel Lebedynskiy, John Lin, Gov Maharaj, Hari Pulapaka, Pierre-Yves
Santerre, Neeraj Singh, Evan Tice, Valeriy Tsuryk, Suma Uppuluri, Landy Wang, Matthew
Woolman

CLR/Silverlight

Reid Borsuk, Jesse Collins, Jeffrey Cooperstein, Nick Kramer

Visual Studio

Jonathan Caves, Tanveer Gani, Mark Hall, Lawrence Joel, Louis Lafreniere, Mark Levine,
Steve Lucco, Mark Roberts, Andre Vachon, YongKang Zhu

Internet Explorer

David Fields, Forbes Higman, Eric Lawrence, Zach Murphy, Justin Rogers

Microsoft
Research

Richard Black, Miguel Castro, Manuel Costa, Ben Livshits, Jay Stokes, Ben Zorn

Microsoft
Security
Engineering
Center

Eugene Bobukh, Tim Burrell, Thomas Garnier, Nitin Kumar Goel, John Lambert, Dave
Probert, Tony Rice, Richard Shupak, Julien Vanegue, Greg Wroblewski

Questions

Contact us at switech@microsoft.com

Were you fascinated by the topics discussed in this presentation?
We are hiring.

http://www.microsoft-careers.com/go/Trustworthy-Computing-Jobs/194701/

45

Microsoft

Be what’s next:

© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

46

10.
11.

12.

Enhanced GS in Visual Studio 2010. Tim Burrell. March, 2009.
http://blogs.technet.com/b/srd/archive/2009/03/20/enhanced-gs-in-visual-studio-2010.asp

Adobe CoolType SING Table “uniqueName” Stack Buffer Overflow Exploit. Metasploit. Sep, 2010.
http://dev.metasploit.com/redmine/projects/framework/repository/revisions/master/entry/modules/explo
browser/adobe cooltype sing.rb

Interpreter Exploitation: Pointer Inference and JIT Spraying. Dionysus Blazakis. Black Hat Federal, 2010.
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf

Defeat Windows 7 Browser Memory Protection. XiaBo Chen, Jun Xie. XCon 2010.

Memory Retrieval Vulnerabilities. Derek Soeder. 2006.
http://www.eeye.com/eEyeDigitalSecurity/media/ResearchPapers/eeyeMRV-Oct2006.pdf

Win32 ASLR round 2. Justin Ferguson, March, 2010. hitp://nietmenja.blogspot.com/2010/03/win32-aslr-round-2.html
Attacking the Vista Heap. Ben Hawkes. Nov, 2008. http://www.lateralsecurity.com/downloads/hawkes ruxcon-nov-2008.pdf

Understanding the Low Fragmentation Heap. Chris Valasek. July, 2010.
http://illmatics.com/Understanding_the LFH Slides.pdf.

Modern Heap Exploitation using the Low Fragmentation Heap. Chris Valasek. 2011.
Heap Feng Shui in JavaScript. Alex Sotirov. 2007. http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html

Preventing the exploitation of user mode heap corruption vulnerabilities. Matt Miller. 2009.
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-
vulnerabilities.aspx

Ghost in the Windows 7 Allocator. Steven Seeley, 2012.
http://conference.hitb.org/hitbsecconf2012ams/materials/D2T2%20-%20Steven%20Seeley%20-%20Ghost%20In%20the
%20Windows%207%20Allocator.pdf

47

14.

15.

16.
17.

18.
19.

20.
21.

22.

Kernel Pool Exploitation on Windows 7. Tarjei Mandt. Bla
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat DC 2011 Man

351 packets from trampoline. Piotr Bania. October, 2009.
http://blog.piotrbania.com/2009/10/351-packets-from-trampoline.html.

SMEP: What is it, and how to beat it on Windows. Mateusz Jurczyk, Gynvael Coldwind. June, 2011.
http://j00ru.vexillium.org/?p=783.

VEH. Ben Hawkes. 2011. http://sota.gen.nz/veh/.

Windows Kernel-mode GS Cookies and 1 bit of entropy. Mateusz Jurczyk, Gynvael Coldwind. January, 2011.
http://j00ru.vexillium.org/?p=690.

Reducing the effective entropy of GS cookies. Skape. May, 2007. http://www.uninformed.org/?v=7&a=2&t=sumry.
Kernel Attacks through User-Mode Callbacks. Tarjei Mandt. Black Hat USA, 2011.
http://mista.nu/research/mandt-win32k-slides.pdf.

Windows 8 Heap Internals. Chris Valasek and Tarjei Mandt. Black Hat USA, 2012.

More information on MS11-087. Chengyun Chu, Jonathan Ness. December, 2011.
http://blogs.technet.com/b/srd/archive/2011/12/13/more-information-on-ms11-087.aspx.

Subtle information disclosure in win32k.sys syscall return values. Mateusz Jurczyk. May, 2011.
http://j00ru.vexillium.org/?p=762.

48

27.
28.

29.

30.

31.

On the effectiveness of DEP and ASLR. Microsoft. Decem
http://blogs.technet.com/b/srd/archive/2010/12/08/on-the- effectlvene

The Exploit Intelligence Project v2. Dan Guido. December, 2011. http://vimeo.com
Microsoft Security Intelligence Report (SIR): Volume 12. Microsoft. April, 2012.
http://www.microsoft.com/en-us/download/details.aspx?id=29569.

Microsoft Security Intelligence Report (SIR): Volume 11. Microsoft. October, 2011.
http://www.microsoft.com/en-us/download/details.aspx?id=27605.

Mitigating Software Vulnerabilities. Microsoft. July, 2011.
http://www.microsoft.com/en-us/download/details.aspx?id=26788.

Compiler Security Enhancements in Visual Studio 11. Tim Burrell. December, 2011.
http://blogs.msdn.com/b/sdl/archive/2011/12/02/security.aspx.

49

